Regular and Chaotic Dynamics

, Volume 17, Issue 5, pp 451–478 | Cite as

Bifurcation analysis and the Conley index in mechanics

  • Alexey V. Bolsinov
  • Alexey V. Borisov
  • Ivan S. Mamaev


The paper is devoted to the bifurcation analysis and the Conley index in Hamiltonian dynamical systems. We discuss the phenomenon of appearance (disappearance) of equilibrium points under the change of the Morse index of a critical point of a Hamiltonian. As an application of these techniques we find new relative equilibria in the problem of the motion of three point vortices of equal intensity in a circular domain.


Morse index Conley index bifurcation analysis bifurcation diagram Hamiltonian dynamics fixed point relative equilibrium 

MSC2010 numbers

76M23 34A05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anosov, D.V., Aranson, S.Kh., Bronstein, I. U., and Grines, V. Z., Smooth Dynamical Systems, in Ordinary Differential Equations and Smooth Dynamical Systems, D. V. Anosov, V. I. Arnol’d (Eds.), Encyclopaedia Math. Sci., vol. 1, Berlin: Springer, 1988.Google Scholar
  2. 2.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Hamiltonisation of Non-Holonomic Systems in the Neighborhood of Invariant Manifolds, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 443–464. [Original Russian version: Rus. J. Nonlin. Dyn., 2010, vol. 6, no. 4, pp. 829–854].MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132 [Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318].MathSciNetCrossRefGoogle Scholar
  4. 4.
    Borisov, A.V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).Google Scholar
  5. 5.
    Dubrovin, B.A., Fomenko, A. T., and Novikov, S.P., Modern Geometry: Methods and Applications: Part 1. The Geometry of Surfaces, Transformation Groups, and Fields, 2nd ed., Grad. Texts in Math., vol. 93, New York: Springer, 1992; Dubrovin, B.A., Fomenko, A. T., and Novikov, S.P., Modern Geometry: Methods and Applications: Part 2. The Geometry and Topology of Manifolds, Grad. Texts in Math., vol. 104, New York: Springer, 1985.Google Scholar
  6. 6.
    Katok, S. B., Bifurcation Sets and Integral Manifolds in the Problem of Motion of a Heavy Rigid Body, Uspekhi Mat. Nauk, 1972, vol. 27, no. 2, pp. 126–132 (Russian).MathSciNetGoogle Scholar
  7. 7.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Dynamics of Point Vortices in and around a Circular Domain, in Fundamental and Applied Problems in the Theory of Vortices, A. V. Borisov, I. S. Mamaev, M.A. Sokolovskiy (Eds.), Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2003, pp. 414–440 (Russian).Google Scholar
  8. 8.
    Kurakin, L. G., Stability, Resonances, and Instability of the Regular Vortex Polygons in the Circular Domain, Dokl. Akad. Nauk, 2004, vol. 399, no. 1, pp. 52–55 [Dokl. Phys., 2004, vol. 49, no. 11, pp. 658–661].MathSciNetGoogle Scholar
  9. 9.
    Kurakin, L. G., The Stability of Thomson’s Configurations of Vortices in a Circular Domain, Rus. J. Nonlin. Dyn., 2009, vol. 5, no. 3, pp. 295–317 (Russian).MathSciNetGoogle Scholar
  10. 10.
    Markeev, A.P., Theoretical Mechanics, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2007 (Russian).Google Scholar
  11. 11.
    Moser, J., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., vol. 81, Providence, RI: AMS, 1968.Google Scholar
  12. 12.
    Smale, S., Topology and Mechanics: 1, Invent. Math., 1970, vol. 10, no. 4, pp. 305–331; Smale, S., Topology and Mechanics: 2. The Planar n-Body Problem, Invent. Math., 1970, vol. 11, no. 1, pp. 45–64.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Tatarinov, Ya.V., Portraits of the Classical Integrals of the Problem of Rotation of a Rigid Body about a Fixed Point, Vestn. Moskov. Univ., Ser. 1. Mat. Mekh., 1974, vol. 6, pp. 99–105 (Russian).MathSciNetGoogle Scholar
  14. 14.
    Fomenko, A.T. and Fuks, D. B., A Course in Homotopic Topology, Moscow: Nauka, 1989 (Russian).zbMATHGoogle Scholar
  15. 15.
    Albouy, A., Symétrie des configurations centrales de quatre corps, C. R. Acad. Sci. Paris, Sér. 1, 1995, vol. 320, pp. 217–220.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Albouy, A., The Symmetric Central Configurations of Four Equal Masses, Contemp. Math., 1996, vol. 198, pp. 131–135.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Arango, C. A. and Ezra, G. S., Classical Mechanics of Dipolar Asymmetric Top Molecules in Collinear Static Electric and Nonresonant Linearly Polarized Laser Fields: Energy-Momentum Diagrams, Bifurcations and Accessible Configuration Space, arXiv:physics/0611231v1 [physics.class-ph], 23 Nov 2006.Google Scholar
  18. 18.
    Armstrong, M.A., Basic Topology, New York: Springer, 1983.zbMATHGoogle Scholar
  19. 19.
    Borisov, A.V. and Mamaev, I. S., On the Problem of Motion of Vortex Sources on a Plane, Regul. Chaotic Dyn., 2006, vol. 11, no. 4, pp. 455–466.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Charles Conley Memorial Volume: Special Issue of Ergodic Theory and Dynamical Systems, Ergodic Theory Dynam. Systems, 1988, vol. 8/8*, no. 9.Google Scholar
  21. 21.
    Conley, Ch., Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, Providence, R. I.: AMS, 1978.zbMATHGoogle Scholar
  22. 22.
    Conley, Ch. C. and Zehnder, R., Morse-Type Index Theory for Flows and Periodic Solutions for Hamiltonian Equations, Comm. Pure Appl. Math., 1984, vol. 37, no. 2, pp. 207–253.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Grauert, H., On Levi’s Problem and the Imbedding of Real-Analytic Manifolds, Ann. of Math. (2), 1958, vol. 68, pp. 460–472.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Guckenheimer, J. and Holmes, Ph., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, New York: Springer, 1983.zbMATHGoogle Scholar
  25. 25.
    Hampton, M. and Moeckel, R., Finiteness of Stationary Configurations of the Four-Vortex Problem, Trans. Amer. Math. Soc., 2009, vol. 361, pp. 1317–1332.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Havelock, T.H., The Stability of Motion of Rectilinear Vortices in Ring Formation, Philos. Mag., 1931, vol. 11, no. 70, pp. 617–633.Google Scholar
  27. 27.
    van der Meer, J.-C., The Hamiltonian Hopf Bifurcation, Lecture Notes in Math., vol. 1160, Berlin: Springer, 1985.zbMATHGoogle Scholar
  28. 28.
    Milnor, J.W., Topology from the Differentiable Viewpoint: Based on Notes by DavidW.Weaver, Princeton, NJ: Princeton Univ. Press, 1997.Google Scholar
  29. 29.
    Mischaikow, K., The Conley Index Theory: A Brief Introduction, in Conley Index Theory (Warsaw, 1997), Banach Center Publ., vol. 47, Warsaw: Polish Acad. Sci., 1999, pp. 9–19.Google Scholar
  30. 30.
    Mischaikow, K. and Mrozek, M., Conley Index Theory, in Conley Index: Handbook of Dynamical Systems: Vol. 2: Towards Applications, B. Fiedler (Ed.), Amsterdam: Elsevier, 2002, pp. 393–460.CrossRefGoogle Scholar
  31. 31.
    O’Neil, K., Clustered Equilibria of Point Vortices, Regul. Chaotic Dyn., 2011, vol. 16, no. 6, pp. 555–561.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Shashikanth, B.N., Dissipative N-Point-Vortex Models in the Plane, J. Nonlinear Sci., 2010, vol. 20, no. 1, pp. 81–103.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Yatsuyanagi, Yu., Kiwamoto, Ya., Tomita, H., Sano, M.M., Yoshida, T., and Ebisuzaki, T., Dynamics of Two-Sign Point Vortices in Positive and Negative Temperature State, Phys. Rev. Lett., 2005, vol. 94, 054502, 4 pp.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Alexey V. Bolsinov
    • 1
    • 2
  • Alexey V. Borisov
    • 2
  • Ivan S. Mamaev
    • 2
  1. 1.School of MathematicsLoughborough UniversityLoughborough, LeicestershireUK
  2. 2.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia

Personalised recommendations