Regular and Chaotic Dynamics

, Volume 17, Issue 3–4, pp 273–292 | Cite as

Normal form construction for nearly-integrable systems with dissipation

  • Aessandra CellettiEmail author
  • Christoph Lhotka


We consider a dissipative vector field which is represented by a nearly-integrable Hamiltonian flow to which a dissipative contribution is added. The vector field depends upon two parameters, namely the perturbing and dissipative parameters, and by a drift term. We study an -dimensional, time-dependent vector field, which is motivated by mathematical models in Celestial Mechanics. Assuming to start with non-resonant initial conditions, we provide the construction of the normal form up to an arbitrary order. To construct the normal form, a suitable choice of the drift parameter must be performed. The normal form allows also to provide an explicit expression of the frequency associated to the normalized coordinates. We also give an example in which we construct explicitly the normal form, we make a comparison with a numerical integration, and we determine the parameter values and the time interval of validity of the normal form.


dissipative system normal form non-resonant motion 

MSC2010 numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnol’d, V. I., Proof of a Theorem of A.N.Kolmogorov on the Invariance of Quasi-periodic Motions under Small Perturbations of the Hamiltonian, Uspekhi Mat. Nauk, 1963, vol. 18, no. 5, pp. 13–40 [Russian Math. Surveys, 1963, vol. 18, no. 5, pp. 9–36].Google Scholar
  2. 2.
    Beaugé, C. and Ferraz-Mello, S., Resonance Trapping in the Primordial Solar Nebula: The Case of a Stokes Drag Dissipation, Icarus, 1993, vol. 103, pp. 301–318.CrossRefGoogle Scholar
  3. 3.
    Broer, H.W., Huitema, G.B., and Sevryuk, M.B., Quasi-Periodic Motions in Families of Dynamical Systems: Order Amidst Chaos, Lecture Notes in Math., vol. 1645, Berlin: Springer, 1996.Google Scholar
  4. 4.
    Calleja, R., Celletti, A., and de la Llave, R., KAM-Theory for Conformally Symplectic Systems, Preprint, 2011 (available on the Mathematical Physics Preprint Archive: mp arc 11-188).Google Scholar
  5. 5.
    Celletti, A., Stability and Chaos in Celestial Mechanics, Berlin: Springer, 2010.zbMATHCrossRefGoogle Scholar
  6. 6.
    Celletti, A. and Chierchia, L., Quasi-Periodic Attractors in Celestial Mechanics, Arch. Rat. Mech. Anal., 2009, vol. 191, no. 2, pp. 311–345.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Celletti, A., Stefanelli, L., Lega, E., and Froeschlé, C., Global Dynamics of the Regularized Restricted Three-Body Problem with Dissipation, Celestial Mech. Dynam. Astronom., 2011, vol. 109, no. 3, pp. 265–284.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ciocci, M.-C., Litvak-Hinenzon, A., and Broer, H.W., Survey on Dissipative KAM Theory including Quasi-Periodic Bifurcation Theory, Geometric Mechanics and Symmetry: The Peyresq Lectures, J. Montaldi and T. Ratiu (Eds.), London Math. Soc. Lecture Note Ser., vol. 306, Cambridge: Cambridge Univ. Press, 2005, pp. 303–355.CrossRefGoogle Scholar
  9. 9.
    Delshams, A., Guillamon, A., and Lázaro, J.T., A Pseudo-Normal Form for Planar Vector Fields, Qual. Theory Dyn. Syst., 2002, vol. 3, no. 1, pp. 51–82.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Henrard, J., A Survey of Poisson Series Processors, Celestial Mech. Dynam. Astronom., 1989, vol. 45, pp. 245–253.Google Scholar
  11. 11.
    Fassò, F., Lie Series Method for Vector Fields and Hamiltonian Perturbation Theory, Z. Angew. Math. Phys., 1990, vol. 41, pp. 843–864.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Feudel, U., Grebogi, C., Hunt, B.R., and Yorke, J.A., Map with More Than 100 Coexisting Low-Period Periodic Attractors, Phys. Rev. E, 1996, vol. 54, no. 1, pp. 71–81.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gallavotti, G., The Elements of Mechanics, New York: Springer, 1983.zbMATHGoogle Scholar
  14. 14.
    Iooss, G. and Lombardi, E., Polynomial Normal Forms with Exponentially Small Remainder for Analytic Vector Fields, J. Differential Equations, 2005, vol. 212, no. 1, pp. 1–61.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kolmogorov, A.N., On Conservation of Conditionally PeriodicMotions for a Small Change in Hamilton’s Function, Dokl. Akad. Nauk SSSR (N. S.), 1954, vol. 98, pp. 527–530 (Russian) (see also: Stochastic Behaviour in Classical and Quantum Hamiltonian Systems (Volta Memorial Conference, Como, 1977), Lect. Notes Phys. Monogr., vol. 93, Berlin: Springer, 1979, pp. 51–56).MathSciNetzbMATHGoogle Scholar
  16. 16.
    Markeev, A.P., On the Stability of the Planar Motions of a Rigid Body in the Kovalevskaya Case, Prikl. Mat. Mekh., 2001, vol. 65, no. 1, pp. 51–58 [J. Appl. Math. Mech., 2001, vol. 65, no. 1, pp. 47–54].MathSciNetGoogle Scholar
  17. 17.
    Moser, J., On Invariant Curves of Area-Preserving Mappings of an Annulus, Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 1962, vol. 1962, no. 1, pp. 1–20.Google Scholar
  18. 18.
    Moser, J., Convergent Series Expansions for Quasi-Periodic Motions, Math. Ann., 1967, vol. 169, pp. 136–176.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Nekhoroshev, N. N., An Exponential Estimate of the Stability Time of Near-Integrable Hamiltonian Systems, Uspekhi Mat. Nauk, 1977, vol. 32, no. 6(198), pp. 5–66 [Russian Math. Surveys, 1977, vol. 32, no. 6, pp. 1–65].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly
  2. 2.Namur Center for Complex Systems, Départment de MathématiqueUniversité FUNDPNamurBelgium

Personalised recommendations