Regular and Chaotic Dynamics

, Volume 17, Issue 2, pp 170–190 | Cite as

Generalized Chaplygin’s transformation and explicit integration of a system with a spherical support

  • Alexey V. Borisov
  • Alexander A. Kilin
  • Ivan S. Mamaev


We discuss explicit integration and bifurcation analysis of two non-holonomic problems. One of them is the Chaplygin’s problem on no-slip rolling of a balanced dynamically non-symmetric ball on a horizontal plane. The other, first posed by Yu. N. Fedorov, deals with the motion of a rigid body in a spherical support. For Chaplygin’s problem we consider in detail the transformation that Chaplygin used to integrate the equations when the constant of areas is zero. We revisit Chaplygin’s approach to clarify the geometry of this very important transformation, because in the original paper the transformation looks a cumbersome collection of highly non-transparent analytic manipulations. Understanding its geometry seriously facilitate the extension of the transformation to the case of a rigid body in a spherical support — the problem where almost no progress has been made since Yu.N. Fedorov posed it in 1988. In this paper we show that extending the transformation to the case of a spherical support allows us to integrate the equations of motion explicitly in terms of quadratures, detect mostly remarkable critical trajectories and study their stability, and perform an exhaustive qualitative analysis of motion. Some of the results may find their application in various technical devices and robot design. We also show that adding a gyrostat with constant angular momentum to the spherical-support system does not affect its integrability.


nonholonomic mechanics spherical support Chaplygin ball explicit integration isomorphism bifurcation analysis 

MSC2010 numbers

37J60 37J35 70E18 70F25 70H45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borisov, A. V., Bolsinov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132 [Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318].MathSciNetGoogle Scholar
  2. 2.
    Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: Regular & Chaotic Dynamics, 2005 (Russian).zbMATHGoogle Scholar
  3. 3.
    Borisov, A. V. and Mamaev, I. S., Rolling of a Non-Homogeneous Ball over a Sphere without Slipping and Twisting, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 153–159.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Selected Problems on Nonholonomic Mechanics, Epreprint, 2005 (Russian)
  5. 5.
    Chaplygin, S. A., On a Ball’s Rolling on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148 [Russian original: Matem. Sb., 1903, vol. 24, no. 1, pp. 139–168; reprinted in: Collected Works: Vol. 1, Moscow-Leningrad: GITTL, 1948, pp. 76–101].MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chung, W., Nonholonomic Manipulators, Springer Tracts in Advanced Robotics, vol. 13, Berlin-New York: Springer, 2004.zbMATHGoogle Scholar
  7. 7.
    Duistermaat, J. J., Chaplygin’s Sphere, arXiv:math/0409019v1Google Scholar
  8. 8.
    Eisenhart, L.P., Separable Systems of Stäckel, Ann. of Math. (2), 1934, vol. 35, no. 2, pp. 284–305.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fedorov, Yu.N., The Motion of a Rigid Body in a Spherical Support, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1988, no. 5, pp. 91–93 (Russian).Google Scholar
  10. 10.
    Fedorov, Yu.N., Two Integrable Nonholonomic Systems in Classical Dynamics, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1989, no. 4, pp. 38–41 (Russian).Google Scholar
  11. 11.
    Jovanović, B., LR and L + R Systems, J. Phys. A, 2009, vol. 42, 225202, 18 pp.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kilin, A.A., The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis, Regul. Chaotic Dyn., 2001, vol. 6, no. 3, pp. 291–306.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Koiller, J. and Ehlers, K., Rubber Rolling over a Sphere, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 127–152.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kumagai, M. and Ochiai, T., Development of a Robot Balancing on a Ball, Proc. Internat. Conf. on Control, Automation and Systems (Seoul, Oct. 14–17, 2008), pp. 433–438.Google Scholar
  15. 15.
    Lauwers, T. B., Kantor, G. A. and Hollis, R. L., A Dynamically Stable Single-Wheeled Mobile Robot with Inverse Mouse-Ball Drive, Proc. IEEE Intern. Conf. on Robotics and Automation (Orlando, FL, May 15–19, 2006), pp. 2884–2889.Google Scholar
  16. 16.
    Markeev, A.P., Integrability of the Problem of Rolling of a Sphere with a Multiply Connected Cavity Filled with an Ideal Fluid, Izv. Akad. Nauk SSSR. Mekhanika tverdogo tela, 1986, vol. 21, no. 1, pp. 64–65 [English transl.: Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 149–151].Google Scholar
  17. 17.
    Nagarajan, U., Kantor, G., and Hollis, R. L., Trajectory Planning and Control of an Underactuated Dynamically Stable Single Spherical Wheeled Mobile Robot, Proc. IEEE Intern. Conf. on Robotics and Automation (Kobe, Japan, May 12–17, 2009), pp. 3743–3748.Google Scholar
  18. 18.
    Shen, J., Schneider, D.A., and Bloch, A.M., Controllability and Motion Planning of a Multibody Chaplygin’s Sphere and Chaplygin’s Top, Internat. J. Robust Nonlinear Control, 2008, vol. 18, no. 9, pp. 905–945.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Veselov, A.P. and Veselova, L. E., Integrable Nonholonomic Systems on Lie Groups, Mat. Zametki, 1988, vol. 44, no. 5, pp. 604–619 [Math. Notes, 1988, vol. 44, nos. 5–6, pp. 810–819].MathSciNetzbMATHGoogle Scholar
  20. 20.
    Veselova, L.E., New Cases of the Integrability of the Equations of Motion of a Rigid Body in the Presence of a Nonholonomic Constraint, in Geometry, Differential Equations and Mechanics, Moscow: Mosk. Gos. Univ., 1986, pp. 64–68 (Russian).Google Scholar
  21. 21.
    Wilson, J. L., Mazzoleni, A.P., DeJarnette, F.R., Antol, J., Hajos, G.A., and Strickland, C. V., Design, Analysis, and Testing of Mars Tumbleweed Rover Concepts, J. Spacecraft Rockets, 2008, vol. 45, no. 2, pp. 370–382.CrossRefGoogle Scholar
  22. 22.
    Xu, Ya. and Ou, Yo., Control of Single Wheel Robots, Springer Tracts in Advanced Robotics, vol. 20, Berlin-New York: Springer, 2005.zbMATHGoogle Scholar
  23. 23.

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Alexey V. Borisov
    • 1
  • Alexander A. Kilin
    • 1
  • Ivan S. Mamaev
    • 1
  1. 1.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia

Personalised recommendations