Regular and Chaotic Dynamics

, Volume 16, Issue 6, pp 653–662 | Cite as

On the model of non-holonomic billiard

  • Alexey V. Borisov
  • Alexander A. Kilin
  • Ivan S. Mamaev
Article

Abstract

In this paper we develop a new model of non-holonomic billiard that accounts for the intrinsic rotation of the billiard ball. This model is a limit case of the problem of rolling without slipping of a ball without slipping over a quadric surface. The billiards between two parallel walls and inside a circle are studied in detail. Using the three-dimensional-point-map technique, the non-integrability of the non-holonomic billiard within an ellipse is shown.

Keywords

billiard impact point map nonintegrability periodic solution nonholonomic constraint integral of motion 

MSC2010 numbers

34D20 70E40 37J35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appell, P., Sur le mouvement d’une bille de billard avec frottement de roulement, J. Math. Pures Appl., Sér. 6, 1911, vol. 7, pp. 85–96.Google Scholar
  2. 2.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., The Rolling Motion of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Coriolis, G.-G., Théorie mathématique des effets du jeu billard, Paris: Carilian-Goeury, 1835.Google Scholar
  4. 4.
    Cross, R., Grip-Slip Behavior of a Bouncing Ball, Amer. J. Phys., 2002, vol. 70, no. 11, pp. 1093–1102.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chatterjee, A., Rigid Body Collisions: Some General Considerations, New Collision Laws, and Some Experimental Data, Ph.D. Thesis, Cornell University, Jan 1997.Google Scholar
  6. 6.
    Bayes, J. H. and Scott, W., Billiard-Ball Collision Experiment, Amer. J. Phys., 1963, vol. 3, no. 31, pp. 197–200.CrossRefGoogle Scholar
  7. 7.
    Derby, N. and Fuller, R., Reality and Theory in a Collision, The Physics Teacher, 1999, vol. 37, no. 1, pp. 24–27.CrossRefGoogle Scholar
  8. 8.
    Glocker, Ch., On Frictionless Impact Models in Rigid-Body Systems: Non-Smooth Mechanics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2001, vol. 359, no. 1789, pp. 2385–2404.CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Hemming, G.W., Billiards Mathematically Treated, London: Macmillan, 1904.MATHGoogle Scholar
  10. 10.
    Horák, Z., Théorie generále du choc dans les systémes matériels, J. École Polytech., Sér. 2, 1931, vol. 28, pp. 15–64.Google Scholar
  11. 11.
    Horák, Z. and Pacáková, I., The Theory of the Spinning Impact of Imperfectly Elastic Bodies, Czechoslovak. J. Phys. B, 1961, vol. 11, pp. 46–65.CrossRefGoogle Scholar
  12. 12.
    Resal, H., Commentaire à la théorie mathématique du jeu de billard, J. Math. Pures Appl., Sér. 3, 1883, vol. 9, pp. 65–98.Google Scholar
  13. 13.
    Suris, Yu. B., The Problem of Integrable Discretization: Hamiltonian Approach, Progr. Math., vol. 219, Boston: Birkhäuser, 2003.CrossRefMATHGoogle Scholar
  14. 14.
    Tabachnikov, S., Geometry and Billiards, Stud. Math. Libr., vol. 30, Providence, RI: AMS, 2005.MATHGoogle Scholar
  15. 15.
    Vorobets, Ya. B., Gal’perin, G.A., and Stepin, A. M., Periodic Billiard Trajectories in Polygons: Generating Mechanisms, Uspekhi Mat. Nauk, 1992, vol. 47, no. 3(285), pp. 9–74 [Russian Math. Surveys, 1992, vol. 47, no. 3, pp. 5–80].MathSciNetGoogle Scholar
  16. 16.
    Goldsmith, W., Impact: The Theory and Physical Behaviour of Colliding Solids, London: Edward Arnold Publ., 1960.MATHGoogle Scholar
  17. 17.
    Dragović, V. and Radnović, M., Integrable Billiards, Quadrics, and Multidimensional Poncelet’s Porisms, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2010.Google Scholar
  18. 18.
    Ivanov, A. P., Dynamics of Systems with Mechanical Collisions, Moscow: Internat. Programm of Education, 1997 (Russian).Google Scholar
  19. 19.
    Ivanov, A.P., The Equations of Motion of a Non-Holonomic System with a Non-Retaining Constraint, Prikl. Mat. Mekh., 1985, vol. 49, no. 5, pp. 717–723 [J. Appl. Math. Mech., 1985, vol. 49, no. 5, pp. 552–557].MathSciNetGoogle Scholar
  20. 20.
    Kozlov, V.V. and Treshchev, D. V., Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, Transl. Math. Monogr., vol. 89, Providence, RI: AMS, 1991.MATHGoogle Scholar
  21. 21.
    Markeev, A.P., Dynamics of a Rigid Body that Collides with a Rigid Surface, Rus. J. Nonlin. Dyn., 2008, vol. 4, no. 1, pp. 1–38 (Russian).MathSciNetGoogle Scholar
  22. 22.
    Nagayev, R.E. and Kholodilin, N.A., On the Theory of Billiard Ball Collisions, Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, 1992, vol. 6, pp. 48–55 (Russian). pp. 48–55. MTT 6 (1992), pp. 48–55. 1995, Pages 887–902Google Scholar
  23. 23.
    Huber, A., Richtig Billard, München: BLV, 2007.Google Scholar
  24. 24.
    Wallace, R.E. and Schroeder, M.C., Analysis of Billiard Ball Collisions in Two Dimensions, Amer. J. Phys., 1988, vol. 56, no. 9, pp. 815–819.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Alexey V. Borisov
    • 1
  • Alexander A. Kilin
    • 1
  • Ivan S. Mamaev
    • 1
  1. 1.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia

Personalised recommendations