Advertisement

Regular and Chaotic Dynamics

, Volume 16, Issue 1–2, pp 117–127 | Cite as

A free energy based mathematical study for molecular motors

  • Shui-Nee ChowEmail author
  • Wen Huang
  • Yao Li
  • Haomin Zhou
Article

Abstract

We present a Parrondo’s paradox for free energy in a classical flashing ratchet model and use it as an alternative way to interpret the working mechanism of molecular motors. We also study the efficiency of molecular motors measured by their free energies. Our example demonstrates that a molecular motor can gain up to 20% in its free energy during the process. In addition, we report a noise induced free energy increasing phenomenon, which is similar to the stochastic resonance, in flashing ratchet models.

Keywords

molecular motors Parrondo’s paradox 

MSC2010 numbers

37H10 60J27 60J60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ait-Haddou, R. and Herzog, W., Brownian RatchetModels ofMolecularMotors, Cell Biochem. Biophys., 2003, vol. 38, no. 2, pp. 191–213.CrossRefGoogle Scholar
  2. 2.
    Chow, S.N., Huang, W., Li, Y., and Zhou, H.M., Fokker-Planck Equations for a Free Energy Functional or Markov Process on a Graph. Preprint.Google Scholar
  3. 3.
    Eliran, B. and Bram, W., The Entropy and Efficiency of a Molecular Motor Model, J. Phys. A, 2009, vol. 42, no. 44, 445003, 10 pp.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Berresford, G.C. and Rockett, A.M., Parrondo’s Paradox, Int. J. Math. Math. Sci., 2003, no. 62, pp. 3957–3962.Google Scholar
  5. 5.
    Harmer, G.P. and Abbott, D., Parrondo’s Paradox, Statist. Sci., 1999, vol. 14, no. 2, pp. 206–213.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Harmer, G.P. and Abbott, D., A Review of Parrondo’s Paradox, Fluct. Noise Lett., 2002, vol. 2, no. 2, pp. 71–107.Google Scholar
  7. 7.
    Harmer, G.P., Abbott, D., and Taylor, P.G., The Paradox of Parrondo’s Games, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2000, vol. 456, no. 1994, pp. 247–259.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Heath, D., Kinderlehrer, D., and Kowalczyk, M., Discrete and Continuous Ratchets: From Coin Toss to Molecular Motor, Discrete Contin. Dyn. Syst. Ser. B, 2002, vol. 2, no. 2, pp. 153–167.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Linke, H., Downton, M.T., and Zuckermann, M. J., Performance Characteristics of Brownian Motors, Chaos, 2005, vol. 15, no. 2, 026111, 11 pp.CrossRefGoogle Scholar
  10. 10.
    Jordan, R., Kinderlehrer, D., and Otto, F., The Variational Formulation of the Fokker-Planck Equation, SIAM J. Math. Anal., 1998, vol. 29, no. 1, pp. 1–17.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kinderlehrer, D. and Kowalczyk, M., Diffusion-Mediated Transport and the Flashing Ratchet, Arch. Rational Mech. Anal., 2002, vol. 161, pp. 149–179.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Otto, F., The Geometry of Dissipative Evolution Equations: The Porous Medium Equation, Comm. Partial Differential Equations, 2001, vol. 26, nos. 1–2, pp. 101–174.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Parrondo, J.M.R., Blanco, J.M., Cao, F. J., and Brito, R., Efficiency of Brownian Motors, Europhys. Lett., 1998, vol. 43, no. 3, pp. 248–254.CrossRefGoogle Scholar
  14. 14.
    Perthame, B. and Souganidis, P.E., Asymmetric Potentials and Motor Effect: A Homogenization Approach, Ann. Inst. H.Poincaré Anal. Non Linéaire, 2009, vol. 26, no. 6, pp. 2055–2071.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Qian, M., Zhang, X., Wilson, R. J., and Feng, J., Efficiency of Brownian Motors in Terms of Entropy Production Rate, Europhys. Lett. EPL, 2008, vol. 84, no. 1, 10014, 6 pp.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Qian, H., Motor Protein with Nonequilibrium Potential: Its Thermodynamics and Efficiency, Phys. Rev. E, 2004, vol. 69, no. 1, 012901, 4 pp.CrossRefGoogle Scholar
  17. 17.
    Qian, H., Cycle Kinetics, Steady State Thermodynamics and Motors: A Paradigm for Living Matter Physics, J. Phys. Condens. Matter, 2005, vol. 17, pp. 3783–3794.CrossRefGoogle Scholar
  18. 18.
    Reimann, P., Grifoni, M., and Hanggi, P., Quantum Ratchet, Phys. Rev. Lett., 1997, vol. 79, no. 1, pp. 10–13.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Reimann, P. and Hanggi, P., Quantum Features of Brownian Motors and Stochastic Resonance, Chaos, 1998, vol. 8, no. 3, pp. 629–642.zbMATHCrossRefGoogle Scholar
  20. 20.
    Reimann, P. and Hanggi, P., Introduction to the Physics of Brownian Motors, Appl. Phys. A, 2002, vol. 75, no. 2, pp. 169–178.CrossRefGoogle Scholar
  21. 21.
    Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications, 2nd ed., Springer Ser. Synergetics, vol. 18, Berlin: Springer, 1989.zbMATHGoogle Scholar
  22. 22.
    Wang, H. and Oster, G., The Stokes Efficiency for Molecular Motors and Its Applications, Europhys. Lett., 2002, vol. 57, pp. 134–140.CrossRefGoogle Scholar
  23. 23.
    Wang, H. and Oster, G., Ratchets, Power Strokes, and Molecular Motors, Appl. Phys. A, 2002, vol. 75, pp. 315–323.CrossRefGoogle Scholar
  24. 24.
    Yunxin, Z., The Efficiency of Molecular Motors, J. Stat. Phys., 2009, vol. 134, no. 4, pp. 669–679.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of mathematicsUniversity of science and Technology of ChinaHefei AnhuiP. R. China

Personalised recommendations