Regular and Chaotic Dynamics

, Volume 16, Issue 1–2, pp 104–116 | Cite as

Hamiltonicity and integrability of the Suslov problem

  • Alexey V. Borisov
  • Alexander A. Kilin
  • Ivan S. Mamaev
Article

Abstract

The Hamiltonian representation and integrability of the nonholonomic Suslov problem and its generalization suggested by S. A. Chaplygin are considered. This subject is important for understanding the qualitative features of the dynamics of this system, being in particular related to a nontrivial asymptotic behavior (i. e., to a certain scattering problem). A general approach based on studying a hierarchy in the dynamical behavior of nonholonomic systems is developed.

Keywords

Hamiltonian system Poisson bracket nonholonomic constraint invariant measure integrability 

MSC2010 numbers

34D20 70E40 37J35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suslov, G.K., Theoretical Mechanics, Moscow, Gostekhizdat, 1946 (Russian).Google Scholar
  2. 2.
    Voronetz, P.V., Equations of Motion of a Rigid Body Rolling along a Stationary Surface Without Slipping, Kiev: Proc. of Kiev University, 1903, pp. 1–66 (Russian). [German: Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt, Math. Ann., 1911, vol. 70, pp. 410–453.]Google Scholar
  3. 3.
    Kozlov, V.V., On the Integration Theory of Equations of Nonholonomic Mechanics, Adv. in Mech., 1985, vol. 8, no. 3, pp.85–107 (Russian). [English: Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 191–176.]MathSciNetGoogle Scholar
  4. 4.
    Kozlov, V.V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Berlin: Springer, 1996.Google Scholar
  5. 5.
    Kharlamova-Zabelina, E. I., Rapid Rotation of a Rigid Body about a Fixed Point under the Presence of a Nonholonomic Constraint, Vestnik Moskovsk. Univ., Ser. Mat. Mekh. Astron. Fiz. Khim., 1957, vol. 12, no. 6, pp. 25–34 (Russian).Google Scholar
  6. 6.
    Borisov, A.V. and Dudoladov, S. L., Kovalevskaya Exponents and Poisson Structures, Regul. Chaotic Dyn., 1999, vol. 4, no. 3, pp. 13–20.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Olver, P., Application of Lie Groups to Differential Equations, New York: Springer, 1986.Google Scholar
  8. 8.
    Tatarinov, Y.V., Separation of Variables and New Topological Phenomena in Holonomic and Nonholonomic Systems, Trudy Sem. Vektor. Tenzor. Anal., 1988, no. 23, pp. 160–174 (Russian).Google Scholar
  9. 9.
    Kharlamova, E. I., Motion Based on the Inertia of a Gyrostat Satisfying a Nonholonomic Constraint, Mekhanika tverdogo tela, 1971, no. 3, pp. 130–132 (Russian).Google Scholar
  10. 10.
    Kharlamov P.V. Gyrostat with a Nonholonomic Constraint, Mekhanika tverdogo tela, 1971, no. 3, pp. 120–130.Google Scholar
  11. 11.
    Fedorov, Yu.N. and Kozlov, V.V., Various Aspects of n-Dimensional Rigid Body Dynamics, Amer. Math. Soc. Transl. Ser. 2, 1995, vol. 168, pp. 141–171.MathSciNetGoogle Scholar
  12. 12.
    Jovanović, B., Non-Holonomic Geodesic Flows on Lie Groups and the Integrable Suslov Problem on SO(4), J. Phys. A, 1998, vol. 31, pp. 1415–1422.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Zenkov, D.V. and Bloch, A. M., Dynamics of the n-Dimensional Suslov Problem, J. Geom. Phys., 2000, vol. 34, pp. 121–136.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jovanović, B., Some Multidimensional Integrable Cases of Nonholonomic Rigid Body Dynamics, Regul. Chaotic Dyn., 2003, vol. 8, no. 1, pp. 125–132.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Borisov, A.V. and Tsygvintsev, A.V., Kowalewski Exponents and Integrable Systems of Classic Dynamics: I, II, Regul. Chaotic Dyn., 1996, vol. 1, no. 1, pp. 15–37 (Russian).MathSciNetGoogle Scholar
  16. 16.
    Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: Inst. Computer Science, 2005 (Russian).MATHGoogle Scholar
  17. 17.
    Kozlov, V.V. and Furta, S.D., Asymptotic Expansions of Solutions of Strongly Nonlinear Systems of Differential Equations, Moscow: Izd. Moskovsk. Univ., 1996.MATHGoogle Scholar
  18. 18.
    Fedorov, Yu.N., Maciejewski, A. J., and Przybylska, M., Suslov Problem: Integrability, Meromorphic and Hypergeometric Solutions, Nonlinearity, 2009, vol. 22, pp. 2231–2259.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Wagner, V., On the Geometrical Interpretation of the Motion of Nonholonomic Dynamical Systems, Trudy Seminara po vekt. i tenz. anal., 1941, no. 5, pp. 301–327 (Russian).Google Scholar
  20. 20.
    Borisov, A.V. and Mamaev, I. S., Chaplygin’s Ball. The Suslov Problem and Veselova’s Problem. Integrability and Realization of Constraints, Nonholonomic Dynamical Systems: Integrability, Chaos, Strange Attractors, A. V. Borisov and I. S. Mamaev (Eds.), Moscow-Izhevsk: Inst. Computer Science, 2002, pp. 118–130 (Russian).Google Scholar
  21. 21.
    Dragović, V., Gajić, B., and Jovanović, B., Generalizations of Classical Integrable Nonholonomic Rigid Body Systems, J. Phys. A, 1998, vol. 31, pp. 9861–9869.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Borisov, A. V. and Mamaev, I. S., The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., The Rolling Motion of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Fuller, F. B., The Writhing Number of a Space Curve, Proc. Nat. Acad. Sci. USA, 1971, vol. 68, no. 4, pp. 815–819.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Borisov, A.V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490CrossRefMathSciNetGoogle Scholar
  26. 26.
    Kozlov, V.V., Realization of Nonintegrable Constraints in Classical Mechanics, Soviet Phys. Dokl., 1983, vol. 28, no. 9, pp. 735–737.MATHGoogle Scholar
  27. 27.
    Kozlova, Z.P., On the Suslov Problem, Izv. Akad. Nauk SSSR. Mekhanika tverdogo tela, 1989, no. 1, pp. 13–16.Google Scholar
  28. 28.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393–403.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Darboux, G., Leçons sur la théorie générale des surfaces, Paris: Gauthier-Villars, 1889.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Alexey V. Borisov
    • 1
  • Alexander A. Kilin
    • 1
  • Ivan S. Mamaev
    • 1
  1. 1.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia

Personalised recommendations