Regular and Chaotic Dynamics

, Volume 16, Issue 1–2, pp 39–50 | Cite as

Dynamics and geometry near resonant bifurcations

  • Henk W. BroerEmail author
  • Sijbo J. Holtman
  • Gert Vegter
  • Renato Vitolo


This paper provides an overview of the universal study of families of dynamical systems undergoing a Hopf-Neĭmarck-Sacker bifurcation as developed in [1–4]. The focus is on the local resonance set, i.e., regions in parameter space for which periodic dynamics occurs. A classification of the corresponding geometry is obtained by applying Poincaré-Takens reduction, Lyapunov-Schmidt reduction and contact-equivalence singularity theory, equivariant under an appropriate cyclic group. It is a classical result that the local geometry of these sets in the nondegenerate case is given by an Arnol’d resonance tongue. In a mildly degenerate situation a more complicated geometry given by a singular perturbation of a Whitney umbrella is encountered. Our approach also provides a skeleton for the local resonant Hopf-Neĭmarck-Sacker dynamics in the form of planar Poincaré-Takens vector fields. To illustrate our methods a leading example is used: A periodically forced generalized Duffing-Van der Pol oscillator.


periodically forced oscillator resonant Hopf-Neĭmarck-Sacker bifurcation geometric structure Lyapunov-Schmidt reduction equivariant singularity theory 

MSC2010 numbers

37G15 37G40 34C25 34C29 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Broer, H., Golubitsky, M., and Vegter, G., The Geometry of Resonance Tongues: A Singularity Approach, Nonlinearity, 2003, vol. 16, pp. 1511–1538.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Broer, H., Holtman, S., and Vegter, G., Recognition of the Bifurcation Type of Resonance in Mildly Degenerate Hopf-Neĭmark-Sacker Families, Nonlinearity, 2008, vol. 21, pp. 2463–2482.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Broer, H., Holtman, S., and Vegter, G., Recognition of Resonance Type in Periodically Forced Oscillators, Physica D, 2010, vol. 239, pp. 1627–1636.zbMATHCrossRefGoogle Scholar
  4. 4.
    Broer, H., Holtman, S., and Vegter, G., and Vitolo, R., Geometry and Dynamics of Mildly Degenerate Hopf-Neĭmarck-Sacker Families Near Resonance, Nonlinearity, 2009, vol. 22, pp. 2161–2200.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Arnol’d, V.I., Geometrical Methods in the Theory of Ordinary Differential Equations, Berlin: Springer, 1982.Google Scholar
  6. 6.
    Kuznetsov, Y., Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112, Berlin, New-York: Springer, 1995.Google Scholar
  7. 7.
    Broer, H., Naudot, V., Roussarie, R., Saleh, K., and Wagener, F., Organising Centres in the Semi-global Analysis of Dynamical Systems, Int. J. Appl. M. Stat., 2007, vol. 12, no. D07, pp. 7–36.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Siewe, M., Kameni, F., and Tchawona, C., Resonant Oscillation and Homoclinic Bifurcation in a Φ6-van der Pol Oscillator, Chaos, Solitons and Fractals, 2004, vol. 24, no. 4, pp. 841–853.CrossRefGoogle Scholar
  9. 9.
    Duffing, G., Erzwungene schwingungen bei veränderlicher eigenfrequenz, Braunschweig: F. Vieweg u. Sohn 1918.zbMATHGoogle Scholar
  10. 10.
    van der Pol, B. and van der Mark, J., Frequency Demultiplication, Nature, 1927, vol. 120, pp. 363–364.CrossRefGoogle Scholar
  11. 11.
    Broer, H., Golubitsky, M., and Vegter, G., Geometry of Resonance Tongues, in Singularity Theory. Proceedings of the 2005 Marseille Singularity School and Conference, Hackensack, NJ: World Sci. Publ., 2007, pp. 327–356.CrossRefGoogle Scholar
  12. 12.
    Broer, H., and Vegter, G., Generic Hopf-Neĭmarck-Sacker Bifurcations in Feed-forward Systems, Nonlinearity, 2008, vol. 21, pp. 1547–1578.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Takens, F., Forced Oscillations and Bifurcations, in Applications of global analysis, I (Sympos., Utrecht State Univ., Utrecht, 1973), Comm. Math. Inst. Rijksuniv. Utrecht, No. 3-1974, Utrecht: Math. Inst. Rijksuniv. Utrecht, 1974, pp. 1–59.Google Scholar
  14. 14.
    Takens, F., Singularities of Vector Fields, Publ. Math. IHES, 1974, vol. 42, pp. 48–100.Google Scholar
  15. 15.
    Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer, 1983.zbMATHGoogle Scholar
  16. 16.
    Vanderbauwhede, A., Branching of Periodic Solutions in Time-reversible Systems, in Geometry and Analysis in Non-linear Dynamics, H. Broer and F. Takens,Eds., Pitman Research Notes in Mathematics, vol. 222, Pitman London, 1992, pp. 97–113.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Henk W. Broer
    • 1
    Email author
  • Sijbo J. Holtman
    • 1
  • Gert Vegter
    • 1
  • Renato Vitolo
    • 2
  1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands
  2. 2.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations