Advertisement

Regular and Chaotic Dynamics

, Volume 15, Issue 4–5, pp 462–481 | Cite as

On a homoclinic origin of Hénon-like maps

  • S. V. GonchenkoEmail author
  • V. S. Gonchenko
  • L. P. Shilnikov
Special Issue: Valery Vasilievich Kozlov-60

Abstract

We review bifurcations of homoclinic tangencies leading to Hénon-like maps of various kinds.

Key words

homoclinic tangency Henon-like maps saddle-focus fixed point wild-hyperbolic attractor 

MSC2000 numbers

37C29 37G25 37D45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hénon, M., A Two-dimensional Mapping with a Strange Attractor, Comm. Math. Phys., 1976, vol. 50, pp. 69–77.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benedidicks, M. and Carleson, L., The Dynamics of the Hénon Map, Ann. Math., 1991, vol. 133, pp. 73–169.CrossRefGoogle Scholar
  3. 3.
    Lai, Y.-C., Grebogi, C., Yorke, J. and Kan, I., How Often are Chaotic Saddles Nonhyperbolic? Nonlinearity, 1993, vol. 6, pp. 779–797.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Newhouse, S.E., The Abundance of Wild Hyperbolic Sets and Non-smooth Stable Sets for Diffeomorphisms, Publ. Math. IHES, 1979, vol. 50, pp. 101–151.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Gavrilov, N.K. and Shilnikov, L.P., On Three-dimensional Dynamical Systems Close to Systems with a Structurally Unstable Homoclinic Curve: Part I, Mat. Sb., 1972, vol. 88(130), no. 4(8), pp. 475–492 [Mathematics of the USSR-Sbornik, 1972, vol. 17, no. 4, pp. 467–485]; Part II, Mat. Sb., 1973, vol. 90(132), no. 1, pp. 139–156 [Mathematics of the USSR-Sbornik, 1973, vol. 19, no. 1, pp. 139–156].MathSciNetGoogle Scholar
  6. 6.
    Tedeschini-Lalli, L. and Yorke, J.A., How Often do Simple Dynamical Processes Have Infinitely Many Coexisting Sinks? Commun. Math. Phys., 1986, vol. 106, pp. 635–657.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gonchenko, S.V., Shilnikov, L.P. and Turaev, D.V., Dynamical Phenomena in Systems with Structurally Unstable Poincaré Homoclinic Orbits, Dokl. Akad. Nauk, 1993, vol. 330, no. 2, pp. 44–147 [Acad. Sci. Dokl. Math., vol. 47, no. 3, pp. 410–415].MathSciNetGoogle Scholar
  8. 8.
    Gonchenko, S.V., Shilnikov, L.P. and Turaev, D.V., Dynamical Phenomena in Systems with Structurally Unstable Poincaré Homoclinic Orbits, Chaos, 1996, vol. 6, no. 1, pp. 15–31.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gonchenko, S.V. and Gonchenko, V. S., On Andronov-Hopf Bifurcations of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies, Preprint of Weierstrass Inst. for Applied Analysis and Stochastics, Berlin, 2000, no. 556; http://www.wias-berlin.de/main/publications/wias-publ/index.cgi.en.
  10. 10.
    Gonchenko, S.V. and Gonchenko, V.S., On Bifurcations of the Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies, Tr. Mat. Inst. Steklova, 2004, vol. 244, pp. 87–114 [Proc. Steklov Inst. Math., 2004, vol. 244, no. 1, pp. 80–105].MathSciNetGoogle Scholar
  11. 11.
    Gonchenko, S.V., Meiss, J.D., and Ovsyannikov, I.I., Chaotic Dynamics of Three-Dimensional Hénon Maps That Originate from a Homoclinic Bifurcation, Regul. Chaotic Dyn., 2006, vol. 11, no. 2, pp. 191–212.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gonchenko, S.V., Shilnikov, L.P., and Turaev, D.V., On the Dynamical Properties of Diffeomorphisms with Homoclinic Tangencies, Contemporary Mathematics and its Applications, 2003, vol. 7, pp. 92–118 (Russian) [English version: J. Math. Sci. (N.Y.), 2005, vol. 126, pp. 1317–1343].Google Scholar
  13. 13.
    Gonchenko, S.V., Sten’kin, O.V., and Shilnikov, L.P., On the Existence of Infinitely Stable and Unstable Invariant Tori for Systems from Newhouse Regions with Heteroclinic Tangencies, Rus. J. Nonlin. Dyn., 2006, vol. 2, no. 1, pp. 3–25 (Russian).Google Scholar
  14. 14.
    Gonchenko, S.V., Gonchenko, V.S., and Tatjer, J.C., Bifurcations of Three-dimensional Diffeomorphisms with Non-simple Quadratic Homoclinic Tangencies and Generalized Hénon Maps, Regul. Chaotic Dyn., 2007, vol. 12, no. 3, pp. 233–266.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gonchenko, S.V., Shilnikov, L.P., and Turaev, D.V., On Dynamical Properties of Multidimensional Diffeomorphisms from Newhouse Regions: P. 1, Nonlinearity, 2008, vol. 21, no. 5, pp. 923–972.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gonchenko, S.V., Shilnikov, L.P., and Turaev, D.V., On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to Wild Lorenz-Like Attractors, Regul. Chaotic Dyn., 2009, vol. 14, no. 1, pp. 137–147.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Biragov, V.S., On Bifurcations in a Two-parameter Family of Conservative Maps Close to the Hénon Map, Methods of the Qualitative Theory of Differential Equations, Gorky State Univ., 1987, pp. 10–23 [English version: Selecta Math. Sovietica, 1990, vol. 9].Google Scholar
  18. 18.
    Gonchenko S.V. and Shilnikov L.P., On Two-dimensional Analytic Area-preserving Diffeomorphisms with Infinitely Many Stable Elliptic Periodic Points, Regul. Chaotic Dyn., 1997, vol. 2, pp. 106–123.zbMATHMathSciNetGoogle Scholar
  19. 19.
    Gonchenko S.V. and Shilnikov L.P., On Two-dimensional Area-Preserving Maps with Homoclinic Tangencies, Dokl. Akad. Nauk, 2001, vol. 378, no. 6, pp. 727–732 (Russian).MathSciNetGoogle Scholar
  20. 20.
    Gonchenko, S.V., Shilnikov, L.P., and Turaev, D.V., Elliptic Periodic Orbits Near a Homoclinic Tangency in Four-dimensional Symplectic Maps and Hamiltonian Systems with Three Degrees of Freedom, Regul. Chaotic Dyn., 1998, vol. 3, No. 4, pp. 3–26.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Turaev, D.V., On Dimension of Nonlocal Bifurcational Problems, Int. J. of Bifurcation and Chaos, 1996, vol. 6, no. 5, pp. 919–948.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Gonchenko, S.V. and Shilnikov, L.P., Eds., Homoclinic Tangencies, Moscow-Izhevsk: RCD, 2007.Google Scholar
  23. 23.
    Gonchenko, S.V., Turaev, D.V., and Shilnikov, L.P., On the Existence of Newhouse Domains in a Neighbourhood of Systems With a Structurally Unstable Poincaré Homoclinic Curve (the Higherdimensional case), Dokl. Akad. Nauk, 1993, vol. 329, no. 4, pp. 404–407 [Russian Acad. Sci. Dokl. Math., 1993, vol. 47, no. 2, pp. 268–273].MathSciNetGoogle Scholar
  24. 24.
    Turaev, D., Polynomial Approximations of Symplectic Dynamics and Richness of Chaos in Nonhyperbolic Area-preserving Maps, Nonlinearity, 2003, vol. 16, pp. 123–135.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Turaev D. and Rom-Kedar, V., Elliptic Islands Appearing in Near-ergodic Flows, Nonlinearity, 1998, vol. 11, pp. 575–600.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Palis, J. and Takens, F., Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors, Cambridge Studies in Advanced Mathematics, vol. 35, Cambridge: Cambridge University Press, 1993.zbMATHGoogle Scholar
  27. 27.
    Palis, J. and Viana, M., High Dimension Diffeomorphisms Displaying Infinitely Many Periodic Attractors, Ann. Math., 1994, vol. 140, pp. 207–250.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Romero, N., Persistence of Homoclinic Tangencies in Higher Dimensions, Ergod. Th. and Dyn.Sys., 1995, vol. 15, pp. 735–757.zbMATHMathSciNetGoogle Scholar
  29. 29.
    Lomelí, H.E. and Meiss, J. D., Quadratic Volume Preserving Maps, Nonlinearity, 1998, vol. 11, no. 3, pp. 557–574.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Gonchenko, S.V. and Shilnikov, L.P., Invariants of Θ-conjugacy of Diffeomorphisms with a Nontransversal Homoclinic Orbit, Ukr. Math. J., 1990, vol. 42, no. 2, pp. 134–140.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Gonchenko, S.V. and Shilnikov, L.P., Om Moduli of Systems with a Nontransversal Poincaré Homoclinic Orbit, Izv. Ross. Akad. Nauk Ser. Mat., 1992, vol. 56, no. 6, pp. 1165–1197 [Russian Acad. Sci. Izv. Math., 1993, vol. 41, no. 3, pp. 417–445].Google Scholar
  32. 32.
    Shilnikov, L.P., Shilnikov, A. L., Turaev, D.V., and Chua, L., Methods of Qualitative Theory in Nonlinear Dynamics, Part I; Part II, River Edge, NJ: World Sci. Publ., 1998, 2002.CrossRefGoogle Scholar
  33. 33.
    Gonchenko, S.V., On Stable Periodic Motions in Systems Close to a System with a Nontransversal Homoclinic Curve, Mat. Zametki, 1983, vol. 33, no. 5., pp. 745–755 [Russian Math. Notes, 1983, vol. 33, no. 5., pp. 384–389].zbMATHMathSciNetGoogle Scholar
  34. 34.
    Newhouse, S.E., Diffeomorphisms with Infinitely Many Sinks, Topology, 1974, vol. 13, pp. 9–18.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Gonchenko, S.V., Ovsyannikov, I.I., Simó, C. and Turaev, D.V., Three-Dimensional Hénon-like Maps and Wild Lorenz-Like Attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, vol. 15, no. 11, pp. 3493–3508.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Leontovich, E.A., On Birth of Limit Cycles From Separatrixes, Math. Dokl. USSR, 1951, vol. 78, no. 4, pp. 641–644 (Russian).Google Scholar
  37. 37.
    Gonchenko, S.V. and Shilnikov, L.P., On Two-dimensional Area-preserving Diffeomorphisms with Infinitely Many Elliptic Islands, J. Stat. Phys., 2000, vol. 101, pp. 321–356.zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Gonchenko, V. S., Kuznetsov, Yu. A., and Meijer, H.G.E., Generalized Hénon Map and Bifurcations of Homoclinic Tangencies, SIAM J. Appl. Dyn. Syst., 2005, vol. 4, no. 2, pp. 407–436.zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Gonchenko, S.V. and Shilnikov, L.P., On Two-dimensional Area-preserving Maps with Homoclinic Tangencies That Have Infinitely Many Generic Elliptic Periodic Points, Notes of S.-Petersburg Math. Steklov Inst., 2003, vol. 300, pp. 155–166.Google Scholar
  40. 40.
    Battelli, F. and Lazzari, C., Perturbing Two-dimensional Maps Having Critical Homoclinic Orbits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1999, vol. 9, no. 6, pp. 1189–1195.zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Gonchenko, S.V., Dynamics and Moduli of ω-conjugacy of 4D-diffeomorphisms with a Structurally Unstable Homoclinic Orbit to a Saddle-focus Fixed Point, Amer. Math. Soc. Transl. Ser. 2, vol. 200, 2000, pp. 107–134.MathSciNetGoogle Scholar
  42. 42.
    Gonchenko, S.V., Gonchenko, V.S., and Tatjer, J.C., Three-dimensional Dissipative Diffeomorphisms with Codimension Two Homoclinic tangencies and generalized Hénon maps, Proc. of Int. Conf. dedicated to 100th Anniv. of A.A. Andronov, Vol. 1, Nizhny Novgorod, 2002, pp. 80–102.Google Scholar
  43. 43.
    Tatjer, J.C., Three-dimensional Dissipative Diffeomorphisms with Homoclinic Tangencies, Ergod.Th. and Dynam.Sys., 2001, vol. 21, no. 1, pp. 249–302.zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Gonchenko, V.S. and Ovsyannikov, I.I., On Bifurcations of Three-dimensional Diffeomorphisms with a Homoclinic Tangency to a “Neutral” Saddle Fixed Point, Notes of S.Petersburg Math.Inst., 2003, vol. 300, pp. 167–172.Google Scholar
  45. 45.
    Gonchenko, V.S. and Shilnikov, L.P., On Bifurcations of a Homoclinic Loop of a Saddle-Focus with the Index 1/2, Dokl. Akad. Nauk, 2007, vol. 417, no. 6, pp. 727–731.MathSciNetGoogle Scholar
  46. 46.
    Gonchenko, S.V. and Gonchenko, M.S., On Cascades of Elliptic Periodic Points in Two-dimensional Symplectic Maps with Homoclinic Tangencies, Regul. Chaotic Dyn., 2009, vol. 14, no. 1, pp. 116–136.CrossRefMathSciNetGoogle Scholar
  47. 47.
    Shilnikov, A.L., Shilnikov, L.P., and Turaev, D.V., Normal Forms and Lorenz Attractors, IInternat. J. Bifur. Chaos Appl. Sci. Engrg., 1993, vol. 3, pp. 1123–1139.CrossRefMathSciNetGoogle Scholar
  48. 48.
    Turaev, D.V. and Shilnikov, L.P., An Example of a Wild Strange Attractor, Mat. Sb., 1998, vol. 189, no. 2, pp. 137–160 [Sb. Math., 1998, vol. 189, nos. 1–2, pp. 291–314].zbMATHMathSciNetGoogle Scholar
  49. 49.
    Turaev, D.V. and Shilnikov, L.P., Pseudohyperbolisity and the Problem on Periodic Perturbations of Lorenz-Type Attractors, Dokl. Akad. Nauk, 2008, vol. 418, no. 1, pp. 23–27.MathSciNetGoogle Scholar
  50. 50.
    Sataev, E.A., Non-existence of Stable Trajectories in Non-autonomous Perturbations of Systems of Lorenz Type, Mat. Sb., 2005, vol. 196, no. 4, pp. 99–134 [Sb. Math., 2005, vol. 196, nos. 3–4, pp. 561–594.MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. V. Gonchenko
    • 1
    Email author
  • V. S. Gonchenko
    • 1
  • L. P. Shilnikov
    • 1
  1. 1.Research Institute of Applied Mathematics and CyberneticsNizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations