Advertisement

Regular and Chaotic Dynamics

, Volume 15, Issue 2–3, pp 146–158 | Cite as

Burst-duration mechanism of in-phase bursting in inhibitory networks

  • I. BelykhEmail author
  • S. Jalil
  • A. Shilnikov
L. P. Shilnikov-75 Special Issue

Abstract

We study the emergence of in-phase and anti-phase synchronized rhythms in bursting networks of Hodgkin-Huxley-type neurons connected by inhibitory synapses. We show that when the state of the individual neuron composing the network is close to the transition from bursting into tonic spiking, the appearance of the network’s synchronous rhythms becomes sensitive to small changes in parameters and synaptic coupling strengths. This bursting-spiking transition is associated with codimension-one bifurcations of a saddle-node limit cycle with homoclinic orbits, first described and studied by Leonid Pavlovich Shilnikov. By this paper, we pay tribute to his pioneering results and emphasize their importance for understanding the cooperative behavior of bursting neurons. We describe the burst-duration mechanism of inphase synchronized bursting in a network with strong repulsive connections, induced by weak inhibition. Through the stability analysis, we also reveal the dual property of fast reciprocal inhibition to establish in- and anti-phase synchronized bursting.

Key words

Bursting neurons synchronization inhibitory networks burst duration 

MSC2000 numbers

34D06 34C23 92B25 37H20 37G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rinzel, J., Bursting Oscillations in an Excitable Membrane Model, Ordinary and Partial Differential Equations (Dundee, 1984), B.D. Sleeman and R. J. Jarvis (Eds.), Lecture Notes in Math., vol. 1151, New York: Springer, 1985, pp. 304–316.CrossRefGoogle Scholar
  2. 2.
    Rinzel, J., A Formal Classification of Bursting Mechanisms in Excitable Systems, Mathematical Topics in Population Biology, Morphogenesis and Neuroscience, E. Teramoto and M. Yamaguti (Eds.), Lecture Notes in Biomath., vol. 71, Berlin: Springer, 1987, pp. 267–281.Google Scholar
  3. 3.
    Rinzel, J. and Ermentrout, B., Analysis of Neural Excitability and Oscillations, Methods of Neural Modeling: From Synapses to Networks, C. Koch and I. Segev (Eds.), MIT Press, 1989, pp. 135–169.Google Scholar
  4. 4.
    Ermentrout, G.B. and Kopell, N., Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation, SIAM J. Appl. Math., 1986, vol. 46, pp. 233–253.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Terman, D., Chaotic Spikes Arising from a Model of Bursting in Excitable Membranes, SIAM J. Appl. Math., 1991, vol. 51, pp. 1418–1450.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Wang, X. J., Genesis of Bursting Oscillations in the Hindmarsh-Rose Model and Homoclinicity to a Chaotic Saddle, Phys. D, 1993, vol. 62, nos. 1–4, pp. 263–274.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bertram, R., Butte, M. J., Kiemel, T., and Sherman, A., Topological and Phenomenologial Classication of Bursting Oscillations, Bull. Math. Biol., 1995, vol. 57, pp. 413–439.zbMATHGoogle Scholar
  8. 8.
    Izhikevich, E., Neural Excitability, Spiking and Bursting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2000, vol. 10, pp. 1171–1266.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Belykh, V.N., Belykh, I.V., Colding-Joregensen, M., and Mosekilde, E. Homoclinic Bifurcations Leading to Bursting Oscillations in Cell Models, Eur. Phys. J. E. Soft Matter Biol. Phys., 2000, vol. 3, pp. 205–219.CrossRefGoogle Scholar
  10. 10.
    Doiron, B., Laing, C., and Longtin, A., Ghostbursting: A Novel Neuronal Burst Mechanism, Comput. Neurosci., 2002, vol. 12, pp. 5–25.CrossRefGoogle Scholar
  11. 11.
    Shilnikov, A. and Cymbalyuk, G., Homoclinic Bifurcations of Periodic Orbits en route from Tonic-Spiking to Bursting in Neuron Models, Regul. Chaotic Dyn., 2004, vol. 9, pp. 281–297.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Shilnikov, A., Calabrese, R., and Cymbalyuk, G., Mechanism of Bi-Stability: Tonic Spiking and Bursting in a Neuron Model, Phys. Rev. E, 2005, vol. 71, 056214, 9 p.Google Scholar
  13. 13.
    Shilnikov, A. and Cymbalyuk, G., Transition between Tonic-Spiking and Bursting in a Neuron Model via the Blue-Sky Catastrophe, Phys. Rev. Lett., 2005, vol. 94, 048101, 4 p.Google Scholar
  14. 14.
    Fröhlich, F. and Bazhenov, M., Coexistence of Tonic Firing and Bursting in Cortical Neurons, Phys. Rev. E, 2006, vol. 74, 031922, 7 p.Google Scholar
  15. 15.
    Chanell, P., Cymbalyuk, G., and Shilnikov, A., Origin of Bursting through Homoclinic Spike Adding in a Neuron Model, Phys. Rev. Lett., 2007, vol. 98, 134101, 4 p.Google Scholar
  16. 16.
    Wang, X.-J. and Rinzel, J., Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons, Neural Comput., 1992, vol. 4, pp. 84–97.CrossRefGoogle Scholar
  17. 17.
    Van Vreeswijk, C., Abbott, L. F., and Bard Ermentrout, G., When Inhibition Not Excitation Synchronizes Neural Firing, Comput. Neurosci., 1994, vol. 1, pp. 313–321.CrossRefGoogle Scholar
  18. 18.
    Kopell, N. and Ermentrout, G. B., Mechanisms of Phase-Locking and Frequency Control, Handbook of Dynamical Systems, vol. 2, B. Fiedler (Ed.), Amsterdam: Elsevier, 2002, pp. 3–54.CrossRefGoogle Scholar
  19. 19.
    Elson, R. C., Selverston, A. I., Abarbanel, H.D. I., and Rabinovich, M. I., Inhibitory Synchronization of Bursting Inbiological Neurons: Dependence on Synaptic Time Constant, J. Neurophysiol., 2002, vol. 88, pp 1166–1176.Google Scholar
  20. 20.
    Golomb D. and Rinzel, J., Clustering in Globally Coupled Inhibitory Neurons, Phys. Rev. E, 1993, vol. 48, pp. 4810–4814.CrossRefGoogle Scholar
  21. 21.
    Somers, D. and Kopell, N., Rapid Synchronization through Fast Threshold Modulation, Biol. Cybernet., 1993, vol. 68, pp. 393–407.CrossRefGoogle Scholar
  22. 22.
    Sherman, A., Anti-Phase, Asymmetric, and Aperiodic Oscillations in Excitable Cells: 1. Coupled Bursters, Bull. Math. Biol., 1994, vol. 56, pp. 811–835.zbMATHGoogle Scholar
  23. 23.
    Terman, D., Kopell, N., and Bose, A., Dynamics of Two Mutually Coupled Slow Inhibitory Neurons, Phys. D, 1998, vol. 117, pp. 241–275.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rubin, J. and Terman, D., Synchronized Activity and Loss of Synchrony among Heterogeneous Conditional Oscillators, SIAM J. Appl. Dyn. Sys., 2002, vol. 1, pp. 146–174.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lewis, T. and Rinzel, J., Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling, Comput. Neurosci., 2003, vol. 14, pp. 283–309.CrossRefGoogle Scholar
  26. 26.
    Rubin, J. and Terman, D., Geometric Singular Perturbation Analysis of Neuronal Dynamics, Handbook of Dynamical Systems, vol. 2, B. Fiedler (Ed.), Amsterdam: Elsevier, 2002, pp. 93–146.Google Scholar
  27. 27.
    Kopell, N. and Ermentrout, G. B., Chemical and Electrical Synapses Perform Complementary Roles in the Synchronization of Interneuronal Networks, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 15482–15487.CrossRefGoogle Scholar
  28. 28.
    Bondarenko, V.E., Cymbalyuk, G. S., Patel, G., DeWeerth, S.P., and Calabrese, R. L., Bifurcation of Synchronous Oscillations into Torus in a System of Two Reciprocally Inhibitory Silicon Neurons: Experimental Observation and Modeling, Chaos, 2004, vol. 14, pp. 995–1003.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Bem, T. and Rinzel, J., Short Duty Cycle Distabilizes a Half-Center Oscillator, by Gap Junctions Can Restabilize the Anti-Phase Pattern, J. Neurophysiol., 2004, vol. 91, pp. 693–703.CrossRefGoogle Scholar
  30. 30.
    Cymbalyuk, G. S., Nikolaev, E. V., and Borisyuk, R.M., In-Phase and Anti-Phase Self-Oscillations in a Model of Two Electrically Coupled Pacemakers, Biol. Cybernet., 1994, vol. 71, pp. 153–160.zbMATHCrossRefGoogle Scholar
  31. 31.
    Belykh, I., de Lange, E., and Hasler, M., Synchronization of Bursting Neurons: What Matters in the Network Topology, Phys. Rev. Lett., 2005, vol. 94, 188101, 4 p.Google Scholar
  32. 32.
    Izhikevich, E.M., Synchronization of Elliptic Bursters, SIAM Rev., 2001, vol. 43, no. 2, pp. 315–344.zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Van Vreeswijk, C. and Hansel, D., Patterns of Synchrony in Neural Networks with Spike Adaptation, Neural Comput., 2001, vol. 13, pp. 959–992.zbMATHCrossRefGoogle Scholar
  34. 34.
    Rabinovich, M. I., Varona, P., Selverston, A. I., and Abarbanel, H.D. I., Dynamical Principles in Neuroscience, Rev. Modern Phys., 2006, vol. 78, no. 4, pp. 1213–1265.CrossRefGoogle Scholar
  35. 35.
    Belykh, I. and Shilnikov, A., When Weak Inhibition Synchronizes Strongly Desynchronizing Networks of Bursting Neurons, Phys. Rev. Lett., 2008, vol. 101, 078102, 4 p.Google Scholar
  36. 36.
    Kopell, N., Toward a Theory of Modelling Central Pattern Generators, Neural Control of Rhythmic Movements in Vertebrates, A.H. Cohen, S. Rossignol, and S. Grillner (Eds.), New York: Wiley, 1987, pp. 369–413.Google Scholar
  37. 37.
    Getting, P.A., Emerging Principles Governing the Operation of Neural Networks, Annu. Rev. Neurosci., 1989, vol. 12, pp. 185–204.CrossRefGoogle Scholar
  38. 38.
    Marder, E. and Calabrese, R. L., Principles of Rhythmic Motor Pattern Generation, Physiol. Rev., 1996, vol. 76, no. 3, pp. 687–717.Google Scholar
  39. 39.
    Marder, E., Kopell, N., and Sigvardt, K., How Computation Aids in Understanding Biological Networks, Neurons, Networks, and Motor Behavior, P. S.G. Stein, A. Selverston, S. Grillner, and D. G. Stuart (Eds.), Cambridge: MIT Press, 1998, pp. 139–150.Google Scholar
  40. 40.
    Kristan, W. B., Calabrese, R. L., and Friesen, W.O., Neuronal Control of Leech Behavior, Progr. Neurobiol., 2005, vol. 76, pp. 279–327.CrossRefGoogle Scholar
  41. 41.
    Kristan, W. B., and Katz, P., Form and Function in Systems Neuroscience, Curr. Biol., 2006, vol. 16, R828–R831.CrossRefGoogle Scholar
  42. 42.
    Briggman, K.L. and Kristan, W. B., Multifunctional Pattern-Generating Circuits, Annu. Rev. Neurosci., 2008, vol. 31, pp. 271–294.CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Brown, T.G., The Intrinsic Factors in the Act of Progerssion in the Mammal, Proc. R. Soc. Lond. B, 1911, vol. 84, pp. 308–319.CrossRefGoogle Scholar
  45. 45.
    Brown, T.G., On the Nature of the Fundamental Activity of the Nervous Ventres: Together with an Analysis of the Conditioning of Rhythmic Activity in Progression, and a Theory of the Evolution of Function in the Nervous System, J. Physiol., 1914, vol. 48, pp. 18–46.Google Scholar
  46. 46.
    Canavier, C.C., Baxter, D.A., Clark, J. W., and Byrne, J. H., Control of Multistability in Ring Circuits of Oscillators, Biol. Cybernet., 1999, vol. 80, pp. 87–102.zbMATHCrossRefGoogle Scholar
  47. 47.
    Baxter, D.A., Lechner, H. A., Canavier, C. C., Butera, R. J., Franceschi, A. A., Clark, J.W., and Byrne, J. H., Coexisting Stable Oscillatory States in Single Cell and Multicellular Neuronal Oscillators, Oscillations in Neural Systems, D. S. Levine, V. R. Brown, V. T. Shirey (Eds.), Hillsdale, NJ: Erlbaum Associates, 1999, pp. 51–78.Google Scholar
  48. 48.
    Prinz, A. A., Bucher, D., and Marder, E., Similar Network Activity from Disparate Circuit Parameters, Nature Neurosci., 2004, vol. 7, pp. 1345–1352.CrossRefGoogle Scholar
  49. 49.
    Shilnikov, A., Gordon, R., and Belykh, I., Polyrhythmic Synchronization in Bursting Network Motifs, Chaos, 2008, vol. 18, 037120, 13 p.CrossRefMathSciNetGoogle Scholar
  50. 50.
    Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., and Calabrese, R. L., Bursting in Leech Heart Interneurons: Cell Autonomous and Network Based Mechanisms, J. Neurosci., 2002, vol. 22, pp. 10580–10592.Google Scholar
  51. 51.
    Tobin, A.-E. and Calabrese, R. L., Endogenous and Half-Center Bursting in Morphologically-Inspired Models of Leech Heart Interneurons, J. Neurophysiol., 2006, vol. 96, pp. 2089–2106.CrossRefGoogle Scholar
  52. 52.
    Jalil, S., Belykh, I., and Shilnikov, A., Fast Reciprocal Inhibition Can Synchronize Bursting Neurons, submitted for publication in Phys. Rev. E. Google Scholar
  53. 53.
    De Lange, E. and Kopell, N., Fast Threshold Modulation, ScholarpediaGoogle Scholar
  54. 54.
    Turaev, D.V. and Shilnikov, L.P., Blue Sky Catastrophe, Dokl. Math., 1995, vol. 51, pp. 404–407.zbMATHGoogle Scholar
  55. 55.
    Shilnikov, A., Shilnikov, L.P., and Turaev, D.V., Blue Sky Catastrophe in Singularly Perturbed Systems, Mosc. Math. J., 2005, vol. 5, no. 1, pp. 269–282.zbMATHMathSciNetGoogle Scholar
  56. 56.
    Lukyanov, V. and Shilnikov, L.P., On Some Bifurcations of Dynamical Systems with Homoclinic Structures, Dokl. Akad. Nauk SSSR, 1978, vol. 243, no. 1, pp. 26–29 [Soviet Math. Dokl., 1978, vol. 19, 1314–1318].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsGeorgia State UniversityAtlantaUSA
  2. 2.Neuroscience InstituteGeorgia State UniversityAtlantaUSA

Personalised recommendations