Advertisement

Regular and Chaotic Dynamics

, Volume 15, Issue 1, pp 1–39 | Cite as

Geometrical models of the phase space structures governing reaction dynamics

  • H. WaalkensEmail author
  • S. Wiggins
Research Articles

Abstract

Hamiltonian dynamical systems possessing equilibria of saddle × center × ... × center stability type display reaction-type dynamics for energies close to the energy of such equilibria; entrance and exit from certain regions of the phase space is only possible via narrow bottlenecks created by the influence of the equilibrium points. In this paper we provide a thorough pedagogical description of the phase space structures that are responsible for controlling transport in these problems. Of central importance is the existence of a Normally Hyperbolic Invariant Manifold (NHIM), whose stable and unstable manifolds have sufficient dimensionality to act as separatrices, partitioning energy surfaces into regions of qualitatively distinct behavior. This NHIM forms the natural (dynamical) equator of a (spherical) dividing surface which locally divides an energy surface into two components (“reactants” and “products”), one on either side of the bottleneck. This dividing surface has all the desired properties sought for in transition state theory where reaction rates are computed from the flux through a dividing surface. In fact, the dividing surface that we construct is crossed exactly once by reactive trajectories, and not crossed by nonreactive trajectories, and related to these properties, minimizes the flux upon variation of the dividing surface.

We discuss three presentations of the energy surface and the phase space structures contained in it for 2-degree-of-freedom (DoF) systems in the three-dimensional space ℙ3, and two schematic models which capture many of the essential features of the dynamics for n-DoF systems. In addition, we elucidate the structure of the NHIM.

Key words

high dimensional Hamiltonian dynamics phase space structure and geometry normally hyperbolic invariant manifold Poincaré-Birkhoff normal form theory chemical reaction dynamics transition state theory 

MSC2000 numbers

37J05 37N99 70Hxx 92E20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V. I., Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60, New York: Springer, 1978.zbMATHGoogle Scholar
  2. 2.
    Arnol’d, V. I., Kozlov, V. V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encyclopaedia of Mathematical Sciences, vol. 3, Berlin: Springer, 1988.Google Scholar
  3. 3.
    Child, M. S. and Pollak, E., Analytical Reaction Dynamics: Origin and Implications of Trapped Periodic Orbits, J. Chem. Phys., 1980, vol. 73, no. 9, pp. 4365–4372.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chisholm, M., The Sphere in Three Dimensions and Higher: Generalizations and Special Cases, 2000, http://www.theory.org/geotopo/.
  5. 5.
    de Oliveira, H. P., Ozorio de Almeida, A. M., Damĩao Soares, I., and Tonini, E. V., Homoclinic Chaos in the Dynamics of a General Bianchi Type-IX Model, Phys. Rev. D. (3), 2002, vol. 65, no. 8, 083511, 9 pp.Google Scholar
  6. 6.
    Deprit, A., Canonical Transformations Depending on a Small Parameter, Celestial Mech., 1969/1970, vol. 1, pp. 12–30.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dragt, A. and Finn, J., Lie Series and Invariant Functions for Analytic Symplectic Maps, J. Math. Phys., 1976, vol. 17, no. 12, pp. 2215–2227.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eckhardt, B., Transition State Theory for Ballistic Electron Transport, J. Phys. A, 1995, vol. 28, 3469.zbMATHCrossRefGoogle Scholar
  9. 9.
    Garrett, B. C., Perspective on “The transition state method” by Wigner E., Trans. Faraday Soc., 1938, vol. 34, pp. 29–41, Theor. Chem. Acc., 2000, vol. 103, pp. 200–204.CrossRefGoogle Scholar
  10. 10.
    Guillemin, V., Moment Maps and Combinatorial Invariants of Hamiltonian T n-spaces, Boston: Birkhäser, 1994.Google Scholar
  11. 11.
    Jacucci, G., Toller, M., DeLorenzi, G., and Flynn, C. P., Rate Theory, Return Jump Catastrophes, and the Center Manifold, Phys. Rev. Lett., 1984, vol. 52, no. 4, pp. 295–298.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Jaffé, C., Farrelly, D., and Uzer, T., Transition State Theory Without Time-reversal Symmetry: Chaotic Ionization of the Hydrogen Atom, Phys. Rev. Lett., 2000, vol. 84, pp. 610–613.CrossRefGoogle Scholar
  13. 13.
    Jaffé, C., Ross, S. D., Lo, M. W., Marsden, J., Farrelly, D., and Uzer, T., Statistical Theory of Asteroid Escape Rates, Phys. Rev. Lett., 2002, vol. 89, no. 1, 011101.CrossRefGoogle Scholar
  14. 14.
    Komatsuzaki, T. and Berry, R. S., Regularity in Chaotic Reaction Paths. I. Ar-6, J. Chem. Phys., 1999, vol. 110, no. 18, pp. 9160–9173.CrossRefGoogle Scholar
  15. 15.
    Laidler, K. J. and King, M. C., The Development of Transition State Theory, J. Phys. Chem., 1983, vol. 87, pp. 2657–2664.CrossRefGoogle Scholar
  16. 16.
    MacKay, R. S., Flux Over a Saddle, Phys. Lett. A, 1990, vol. 145, pp. 425–427.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Mahan, B. H., Activated complex theory of bimolecular reactions, J. Chem. Edu., 1974, vol. 51, no. 11, pp. 709–711.CrossRefGoogle Scholar
  18. 18.
    Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry (2nd edition), Berlin: Springer, 1999.zbMATHGoogle Scholar
  19. 19.
    McGehee, R. P., Some Homoclinic Orbits for the Restricted Three-Body Problem, Ph.D. thesis, University of Wisconsin, (1969.Google Scholar
  20. 20.
    Meyer, K., Normal Forms for Hamiltonian Systems, Celestial Mech., 1974, vol. 9, pp. 517–522.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Meyer, K., A Lie Transform Tutorial II, in Computer Aided Proofs in Analysis (Cincinnati, OH, 1989), The IMA Volumes in Mathematics and its Applications, vol. 28, Berlin: Springer, 1991, pp. 190–210.Google Scholar
  22. 22.
    Meyer, K. and Hall, G., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, vol. 90, Berlin: Springer, 1992.zbMATHGoogle Scholar
  23. 23.
    Miller, W. H., Spiers Memorial Lecture. Quantum and Semiclassical Theory of Reaction Rates, Farad. Discuss., 1998, vol. 110, pp. 1–21.CrossRefGoogle Scholar
  24. 24.
    Murdock, J. Normal Forms and Unfoldings for Local Dynamical Systems, New York: Springer, 2003.zbMATHGoogle Scholar
  25. 25.
    Pechukas, P., Transition State Theory, Ann. Rev. Phys. Chem., 1981, vol. 32, pp. 159–177.CrossRefGoogle Scholar
  26. 26.
    Pechukas, P. and McLafferty, F. J., On Transition-State Theory and the Classical Mechanics of Collinear Collisions, J. Chem. Phys., 1973, vol. 58, pp. 1622–1625.CrossRefGoogle Scholar
  27. 27.
    Pechukas, P. and Pollak, E., Trapped Trajectories at the Boundary of Reactivity Bands in Molecular Collisions, J. Chem. Phys., 1977, vol. 67, no. 12, pp. 5976–5977.CrossRefGoogle Scholar
  28. 28.
    Pechukas, P. and Pollak, E., Transition States, Trapped Trajectories, and Classical Bound States Embedded in the Continuum, J. Chem. Phys., 1978, vol. 69, pp. 1218–1226.CrossRefGoogle Scholar
  29. 29.
    Pechukas, P. and Pollak, E., Classical Transition State Theory is Exact if the Transition State is Unique, J. Chem. Phys., 1979, vol. 71, no. 5, pp. 2062–2068.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Pollak, E., A Classical Spectral Theorem in Bimolecular Collisions, J.Chem.Phys., 1981, vol. 74, no. 12, pp. 6763–6764.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Pollak, E. and Child, M. S., Classical Mechanics of a Collinear Exchange Reaction: A Direct Evaluation of the Reaction Probability and Product Distribution, J.Chem.Phys., 1980, vol. 73, no. 9, pp. 4373–4380.CrossRefMathSciNetGoogle Scholar
  32. 32.
    Pollak, E. and Pechukas, P., Unified Statistical Model for “Complex” and “Direct” Reaction Mechanisms: A Test on the Collinear H + H 2 Exchange Reaction, J.Chem.Phys., 1979, vol. 70, no. 1, pp. 325–333.CrossRefMathSciNetGoogle Scholar
  33. 33.
    Pollak, E. and Talkner, P., Reaction Rate Theory: What Is Was, Where It Is Today, and Where Is It Going? Chaos, 2005, vol. 15, 026116, 11 pp.Google Scholar
  34. 34.
    Pollak, E., Child, M. S., and Pechukas, P., Classical Transition State Theory: a Lower Bound to the Reaction Probability, J. Chem.Phys., 1980, vol. 72, pp. 1669–1678.CrossRefMathSciNetGoogle Scholar
  35. 35.
    Schubert, R., Waalkens, H., and Wiggins, S., Efficient Computation of Transition State Resonances and Reaction Rates from a Quantum Normal Form, Phys. Rev. Lett., 2006, vol. 96, 218302.CrossRefGoogle Scholar
  36. 36.
    Uzer, T., Jaffe, C., Palacian, J., Yanguas, P., and Wiggins, S., The Geometry of Reaction Dynamics, Nonlinearity, 2002, vol. 15, pp. 957–992.zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Voter, A. F., Montalenti, F., and Germann, T. C., Extending the Time Scale in Atomistic Simulation of Materials, Annu. Rev. Mater. Res., 2002, vol. 32, pp. 321–346.CrossRefGoogle Scholar
  38. 38.
    Waalkens, H. and Wiggins, S., Direct Construction of a Dividing Surface of Minimal Flux for Multidegree-of-freedom Systems That Cannot Be Recrossed, J. Phys. A, 2004, vol. 37, pp. L435–L445.zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Waalkens, H., Burbanks, A., and Wiggins, S., A Computational Procedure to Detect a New Type of High-Dimensional Chaotic Saddle and Its Application to the 3D Hill’s Problem, J. Phys. A, 2004, vol. 37, pp. L257–L265.CrossRefMathSciNetGoogle Scholar
  40. 40.
    Waalkens, H., Burbanks, A., & Wiggins, S., Phase Space Conduits for Reaction in Multidimensional Systems: HCN Isomerization in Three Dimensions, J. Chem. Phys., 2004, vol. 121, no. 13, pp. 6207–6225.CrossRefGoogle Scholar
  41. 41.
    Waalkens, H., Burbanks, A., and Wiggins, S., Efficient Procedure to Compute the Microcanonical Volume of Initial Conditions That Lead to Escape Trajectories from a Multidimensional Potential Well, Phys. Rev. Lett., 2005, vol. 95, 084301.CrossRefGoogle Scholar
  42. 42.
    Waalkens, H., Burbanks, A., and Wiggins, S., Escape from Planetary Neighborhoods, Mon. Not. R. Astron. Soc., 2005, vol. 361, pp. 763–775.CrossRefGoogle Scholar
  43. 43.
    Waalkens, H., Burbanks, A., and Wiggins, S., A Formula to Compute the Microcanonical Volume of Reactive Initial Conditions in Transition State Theory, J. Phys. A, 2005, vol. 38, pp. L759–L768.zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Waalkens, H., Schubert, R., and Wiggins, S., Wigner’s Dynamical Transition State Theory in Phase Space: Classical and Quantum, Nonlinearity, 2008, vol. 21, no. 1, pp. R1–R118.zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Wiggins, S., On the Geometry of Transport in Phase Space I. Transport in k-degree-of-freedom Hamiltonian systems, 2 ⩽ k < ∞. Physica D, 1990, vol. 44, pp. 471–501.zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Wiggins, S., Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-Verlag, 1994.Google Scholar
  47. 47.
    Wiggins, S., Wiesenfeld, L., Jaffe, C., and Uzer, T., Impenetrable Barriers in Phase-space. Phys. Rev. Lett., 2001, vol. 86, no. 24, pp. 5478–5481.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.School of MathematicsUniversity of BristolBristolUK
  2. 2.Department of MathematicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations