Advertisement

Regular and Chaotic Dynamics

, Volume 14, Issue 2, pp 223–236 | Cite as

Explicit solution of the Zhukovski-Volterra gyrostat

  • I. BasakEmail author
Research Articles

Abstract

The paper is devoted to explicit integration of the classical generalization of the Euler top: the Zhukovski-Volterra system describing the free motion of a gyrostat. We revise the solution for the components of the angular momentum first obtained by Volterra in [1] and present an alternative solution based on an algebraic parametrization of the invariant curves. This also enables us to derive an effective description of the motion of the body in space.

Key words

rigid body dynamics explicit integration elliptic curves 

MSC2000 numbers

37J60 37J35 70H45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volterra, V., Sur la théorie des variations des latitudes, Acta Math., 1899, vol. 22, pp. 201–357.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Whittaker, A., A Traitise on Analytical Dymamics, 4th ed., Cambridge: Cambridge Univ. Press, 1960.Google Scholar
  3. 3.
    Jacobi, C.G. J., Sur la rotation d’un corps, in Gesammelte Werke, Bd. 2, Berlin: Reimer, 1884, pp. 139–172.Google Scholar
  4. 4.
    Zhukovsky, N.E., On the Motion of a Rigid Body with Cavities Filled with a Homogeneous Fluid, in Collected works, vol. 1, Moscow-Leningrad: Gostekhisdat, 1949 (in Russian).Google Scholar
  5. 5.
    Wittenburg, J., Beitrage zur Dynamik von Gyrostat, Acc. Naz. dei Lincei, 1995, vol. 217, pp. 217–357.Google Scholar
  6. 6.
    Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, 2nd ed., Moscow-Izhevsk: RCD, Inst. Comp. Sci., 2005 (in Russian).zbMATHGoogle Scholar
  7. 7.
    Fedorov, Yu., Integrable Systems, Poisson Pencils, and Hyperelliptic Lax Pairs, Regul. Chaotic Dyn., 2000, vol. 5, no. 2, pp. 171–180.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Harris, J., Algebraic Geometry: A First Course, Grad. Texts in Math., vol. 133, New York: Springer, 1995.Google Scholar
  9. 9.
    Fedorov, Yu., Classical Integrable Systems and Billiards Related to Generalized Jacobians, Acta Appl. Math., 1999, vol. 55, no. 3, pp. 251–301.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lawden, D., Elliptic Functions and Applications, New York: Springer, 1989.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department de Matemàtica Aplicada IUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations