Regular and Chaotic Dynamics

, Volume 14, Issue 1, pp 18–41 | Cite as

Multiparticle systems. The algebra of integrals and integrable cases

Jürgen Moser-80

Abstract

Systems of material points interacting both with one another and with an external field are considered in Euclidean space. For the case of arbitrary binary interaction depending solely on the mutual distance between the bodies, new integrals are found, which form a Galilean momentum vector. A corresponding algebra of integrals constituted by the integrals of momentum, angular momentum, and Galilean momentum is presented. Particle systems with a particle-interaction potential homogeneous of degree α = −2 are considered. The most general form of the additional integral of motion, which we term the Jacobi integral, is presented for such systems. A new nonlinear algebra of integrals including the Jacobi integral is found. A systematic description is given to a new reduction procedure and possibilities of applying it to dynamics with the aim of lowering the order of Hamiltonian systems.

Some new integrable and superintegrable systems generalizing the classical ones are also described. Certain generalizations of the Lagrangian identity for systems with a particle-interaction potential homogeneous of degree α = −2 are presented. In addition, computational experiments are used to prove the nonintegrability of the Jacobi problem on a plane.

Key words

multiparticle systems Jacobi integral 

MSC2000 numbers

70Hxx 70G65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacobi, C.G. J., Sur l’élimination des noeuds dans le Problème des Trois Corps, J. Reine Angew. Math., 1843, vol. 26, pp. 115–131.MATHGoogle Scholar
  2. 2.
    Bour, E., Mémoire sur le probl`eme des trois corps, J. École Polytechn., 1856, vol. 21, pp. 35–58.Google Scholar
  3. 3.
    Radau, R., Sur une Transformation des équations differentielles de la dynamique, Ann. Sci. École Norm. Sup., ser. 1, 1868, vol. 5, pp. 311–375.MathSciNetGoogle Scholar
  4. 4.
    Woronetz, P., Über das Problem der Bewegung von vier Massenpunkten unter dem Einflusse von inneren Kräften, Math. Annalen., 1907, vol. 63, pp. 387–412.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cartan, E., Leçons sur les invariants intégraux, Paris: Hermann, 1922, 210 pp.MATHGoogle Scholar
  6. 6.
    Albouy, A. and Chenciner, A., Le problème des n corps et les distances mutuelles, Invent. Math., 1998, vol. 131, p. 151–184.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Lie Algebras in Vortex Dynamics and Celestial Mechanics, IV, Regul. Chaotic Dyn., 1999, vol. 4, no. 1, pp. 23–50.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Borisov, A.V. and Mamaev, I.S., Poisson Structures and Lie Algebras in Hamiltonian Mechanics, vol. 7 of Library “R & C Dynamics”, Izhevsk, 1999.Google Scholar
  9. 9.
    Lie, S., Begründung einer Invarianten-Theorie der Berührungs-Transformationen, Math. Ann., 1874, vol. 8, no. 2, pp. 215–303.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Polischuk E.M., Sophus Lie, Leningrad: Nauka, 1983.Google Scholar
  11. 11.
    Stubhaug, A., The Mathematician Sophus Lie, Berlin: Springer, 2002, 555 pp.MATHGoogle Scholar
  12. 12.
    Sadetov, S.T., On the Regular Reduction of the n-Dimensional Problem of N + 1 Bodies to Euler-Poincare equations on the Lie Algebra sp(2N), Regul. Chaotic Dyn., 2002, vol. 7, no. 3, pp. 337–350.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Zhukovskiy, N.E., On the Motion of a Material Pseudospherical Figure on a Sphere, Collected Works, Moscow-Leningrad, 1937, pp. 490–535.Google Scholar
  14. 14.
    Gal’perin, G.A., The Concept of the Center of Mass of a System of Mass Points in Spaces of Constant Curvature, Dokl. Akad. Nauk SSSR, 1988, vol. 302, no. 5, pp. 1039–1044 [Soviet Math. Dokl. 1988, vol. 38, no. 2, pp. 367–371].Google Scholar
  15. 15.
    Killing, H. W., Die Mechanik in den Nicht-Euklidischen Raumformen, J. Reine Angew. Math., 1885, vol. 98, no. 1, pp. 1–48.MathSciNetGoogle Scholar
  16. 16.
    Borisov A.V., Mamaev I.S. (Eds.), Classical dynamics in non-Eucledian spaces. Moscow-Izhevsk: Inst. komp. issled., RCD, 2004 (Russian).Google Scholar
  17. 17.
    Chernikov, N. A., The Relativistic Kepler Problem in the Lobachevsky Space, Acta Phys. Polon. B, 1993, vol. 24, pp. 927–950.MathSciNetGoogle Scholar
  18. 18.
    Borisov, A.V. and Mamaev, I. S., Generalized Problem of Two and Four Newtonian Centers, Celestial Mech. Dynam. Astronom., 2005, vol. 92, no. 4, pp. 371–380.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Borisov, A.V. and Mamaev, I. S., The Restricted Two-Body Problem in Constant Curvature Spaces, Celestial Mech. Dynam. Astronom., 2006, vol. 96, no. 1, pp. 1–17.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Two-Body Problem on a Sphere. Reduction, Stochasticity, Periodic Orbits, Regul. Chaotic Dyn., 2004, vol. 9, no. 3, pp. 265–280.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kilin, A.A., Libration Points in Spaces S2 and L2, Regul. Chaotic Dyn., 1999, vol. 4, no. 1, pp. 91–103.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Arnold, V.I., Kozlov, V.V., and Neishtadt, A.I. Mathematical Aspects of Classical and Celestial Mechanics, [Dynamical systems. III], Third edition. Encyclopaedia of Mathematical Sciences, vol. 3, Berlin: Springer-Verlag, 2006.Google Scholar
  23. 23.
    Liebmann, H., Über die Zantalbewegung in der nichteuklidiche Geometrie, Leipzig, 1903, vol. 55, pp. 146–153.Google Scholar
  24. 24.
    Higgs, P.W., Dynamical Symmetries in a Spherical Geometry, I, J. Phys. A: Math. Gen., 1979, vol. 12, no. 3, pp. 309–323.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Granovskii, Ya.I., Zhedanov, A.S., and Lutsenko, I.M., Quadratic Algebras and Dynamics in Curved Space. I. An oscillator, Teoret. Mat. Fiz., 1992, vol. 91, no. 2, pp. 207–216 [Theoret. and Math. Phys., 1992, vol. 91, no. 2, pp. 474–480]; II. The Kepler problem, Teoret. Mat. Fiz., 1992, vol. 91, no. 3, pp. 396–410 [Theoret. and Math. Phys., 1992, vol. 91, no. 3, pp. 604–612].MathSciNetGoogle Scholar
  26. 26.
    Kozlov, V.V. and Harin, A.O., Kepler’s Problem in Constant Curvature Spaces, Celestial Mech. Dynam. Astronom., 1992, vol. 54, pp. 393–399.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Serret, P., Théorie nouvelle géométrique et mécanique des lignes a double courbure, Paris: Librave de Mallet-Bachelier, 1860.Google Scholar
  28. 28.
    Kozlov, V.V., Dynamics in spaces of constant curvature., Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1994, no. 2, pp. 28–35 [Moscow Univ. Math. Bull., 1994, vol. 49, no. 2, pp. 21–28].Google Scholar
  29. 29.
    Kozlov, V.V., Lagrange’s Identity and Its Generalizations, Regul. Chaotic Dyn., 2008, vol. 13, no. 2, pp. 71–80.MathSciNetGoogle Scholar
  30. 30.
    Jacobi, C.G. J., Problema trium corporum mutuis attractionibus cubis distantiarum inverse proportionalibus recta linea se moventium, Gesammelte Werke, vol. 4, Berlin: Reimer, 1886, pp. 531–539.Google Scholar
  31. 31.
    Jacobi, C.G. J., Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi, Gesammelte Werke, vol. 4, Berlin: Reimer, 1886, pp. 319–509.Google Scholar
  32. 32.
    Calogero, F., Solution of the One-Dimensional N-Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials, J. Math. Phys., 1971, vol. 12, pp. 419–436.CrossRefMathSciNetGoogle Scholar
  33. 33.
    Moser, J., Three Integrable Hamiltonian Systems Connected with Isospectral Deformations, Surveys in applied mathematics (Proc. First Los Alamos Sympos. Math. in Natural Sci., Los Alamos, N.M., 1974), New York: Academic Press, 1976, pp. 235–258.Google Scholar
  34. 34.
    Olshanetsky, M.A. and Perelomov, A.M., Explicit Solution of the Calogero Model in the Classical Case and Geodesic Flows on Symmetric Spaces of Zero Curvature, Lett. Nuovo Cimento (2), 1976, vol. 16, no. 11, pp. 333–339.CrossRefMathSciNetGoogle Scholar
  35. 35.
    Perelomov, A.M., Integrable Systems of Classical Mechanics and Lie Algebras, Basel: Birkhäser, 1990.Google Scholar
  36. 36.
    Diacu, F., Pérez-Chavela, E., and Santoprete, M., The n-Body Problem in Spaces of Constant Curvature, arXiv:0807.1747v6 22 Aug 2008.Google Scholar
  37. 37.
    Diacu, F. and Santoprete, M., Nonintegrability and Chaos in the Anisotropic Manev Problem, Phys. D, 2001, vol. 156, pp. 39–52.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Shortley, G. H., The Inverse-Cube Central Force Field in Quantum Mechanics, Phys. Rev., 1931, vol. 38, pp. 120–127.MATHCrossRefGoogle Scholar
  39. 39.
    Woronetz, P., Transformations of the Equations of Dynamics by Linear Integrals of Motion (with Application to the 3-Body Problem), 1907, vol. 47, 192 pp.Google Scholar
  40. 40.
    Woronetz, P., Some Particular Cases of Motion of a System of Material Points under Action of Mutual Forces, Kiev Univ. Izv, 1905, vol. 45, no. 11, pp. 95–114.Google Scholar
  41. 41.
    Woronetz, P., Sur le mouvement d’un point matériel, soumis à une force donnée, sur une surface fixe et dépolie, J. de Math. Pures et Appl., 1915, vol. 1,ser. 7, pp. 261–275.Google Scholar
  42. 42.
    Banachiewitz, T., Sur un cas particulier du probl`eme des n corps, C. R. Acad. Sci. Paris, 1906, vol. 142, p. 510–512.Google Scholar
  43. 43.
    Bilimowitch, A., Einige particuläre Lösungen des Problems der n Körper, Astron. Nachr., 1911, vol. 189, pp. 181–186.CrossRefGoogle Scholar
  44. 44.
    Longley, W.R., Some Particular Solutions in the Problem of n Bodies, Bull. Amer. Math. Soc., ser. 2, 1906, vol. 13, pp. 324–335.CrossRefMathSciNetGoogle Scholar
  45. 45.
    Sokolov, Yu.D., Special Trajectories of the System of Free Material Particles, Kiev: Izd. AN Ukr.SSR, 1951 (Russian).Google Scholar
  46. 46.
    Sokolov, Yu.D., A New Integrable Case in a Rectilinear 3-Body Probem, Dokl. kad. nauk USSR, 1945, vol. 46, no. 8, pp. 99–102.Google Scholar
  47. 47.
    Sokolov, Yu.D., On a Spatial Homographic Motion of a System of 3 Material Points, Dokl. Akad. nauk USSR, 1947, vol. 58, no. 3, pp. 369–371.MATHGoogle Scholar
  48. 48.
    Egervary, E., On a Generalization of the Lagrange problem of 3 Bodies, Dokl. Akad. nauk USSR, 1947, vol. 55, no. 9, pp. 805–807.MathSciNetGoogle Scholar
  49. 49.
    Chazy, J., Sur la stabilité avec la loi du cube des distances, Bull. Astron., 1920, vol. 1,ser. 2, pp. 151–163.Google Scholar
  50. 50.
    Saari, D.G., Collisions, Rings, and Other Newtonian N-Body Problems, Providence, RI: AMS, 2005.MATHGoogle Scholar
  51. 51.
    Wintner, A., Galilei Group and Law of Gravitation, Amer. J. Math., 1938, vol. 60, no. 2, pp. 473–476.CrossRefMathSciNetGoogle Scholar
  52. 52.
    Dyson, F. J., Dynamics of a Spinning Gas Cloud, J. Math. Mech., 1968, vol. 18, no. 1, pp. 91–101.MATHGoogle Scholar
  53. 53.
    Gaffet, B., Expanding Gas Clouds of Ellipsoidal Shape: New Exact Solutions, J. Fluid Mech., 1996, vol. 325, pp. 113–144.MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, New York: Springer, 1994.MATHGoogle Scholar
  55. 55.
    Borisov, A.V. and Mamaev, I.S., Rigid Body Dynamics. Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: Inst. komp. issled., RCD, 2005 (Russian).Google Scholar
  56. 56.
    Perelomov, A. M., The Simple Relation between Certai Dynamical Systems, Comm. Math. Phys., 1978, vol. 63, pp. 9–11.MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Rosochatius, E., Über die Bewegung eines Punktes (Inaugural Dissertation, Univ. Göttingen), Berlin: Gebr. Unger, 1877.Google Scholar
  58. 58.
    Borisov, A.V. and Mamaev, I.S., Modern Methods of the Theory of Integrable Systems, Moscow-Izhevsk: Inst. komp. issled., RCD, 2003 (Russian).MATHGoogle Scholar
  59. 59.
    Moser, J., Geometry of Quadrics and Spectral Theory, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), New York-Berlin: Springer, 1980, pp. 147–188.Google Scholar
  60. 60.
    Tsiganov, A.V., On Maximally Superintegrable Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 3, pp. 178–190.CrossRefMathSciNetGoogle Scholar
  61. 61.
    Gaffet, B., Spinning Gas Clouds — without Vorticity, J. Phys. A: Math. Gen., 2000, vol. 33, pp. 3929–3946.MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Gaffet, B., Sprinning Gas without Vorticity: the Two Missing Integrals, J. Phys. A: Math. Gen., 2001, vol. 34, pp. 2087–2095.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Gaffet, B., Sprinning Gas Clouds: Liouville Integrability, J. Phys. A: Math. Gen., 2001, vol. 34, pp. 2097–2109.MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Julliard-Tosel, E., Meromorphic Parametric Non-Integrability; the Inverse Square Potential, Arch. Ration. Mech. Anal., 2000, vol. 152, pp. 187–205.CrossRefMathSciNetGoogle Scholar
  65. 65.
    Calogero, F., Exactly Solvable One-Dimensional Many-Body Problems, Lett. Nuovo Cimento, 1975, vol. 13, pp. 411–416.CrossRefMathSciNetGoogle Scholar
  66. 66.
    Calogero, F., Lett. Nuovo Cimento, 1976, vol. 16, p. 77CrossRefMathSciNetGoogle Scholar
  67. 67.
    Olshanetsky, M.A. and Perelomov, A.M., Completely Integrable Hamiltonian Systems Connected with Semisimple Lie Algebras. Invent. Math., 1976, vol. 37, pp. 93–109.MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Wojciechowski, S., Involutive Set of Integrals for Completely Integrable Many-Body Problems with Pair Interaction, Lett. Nuovo Cimento, 1977, vol. 18, no. 4, pp. 103–107.CrossRefGoogle Scholar
  69. 69.
    Levi, D. and Wojciechowski, S., On the Olshanetsky-PerelomovMany-Body System in an External Field Phys. Lett., 1984, vol. 103A, no. 1–2, pp. 11–14.MathSciNetGoogle Scholar
  70. 70.
    Ranada, M. F., Superintegrability of the Calogero-Moser System: Constants of Motion, Master Symmetries and Time-Dependent Symmetries, J. Math. Phys., 1999, vol. 40, pp. 236–247.MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Gonera, C., On the Superintegrability of Calogero-Moser-Sutherland Model, J. Phys. A: Math. Gen., 1998, vol. 31, pp. 4465–4472.MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Wojciechowski, S., Superintegrability of the Calogero-Moser System, Phys. Lett. A, 1983, vol. 95, no. 6, pp. 279–281.CrossRefMathSciNetGoogle Scholar
  73. 73.
    Smirnov, R. and Winternitz, P., A Class of Superintegrable Systems of Calogero Type, J. Math. Phys., 2006, vol. 47, no. 9, 093505, 8 pp.Google Scholar
  74. 74.
    Kozlov, V.V. and Fedorov, Y.N., Integrable Systems on a Sphere with Potentials of Elastic Interaction, Mat. Zametki, 1994, vol. 56, no. 3, pp. 74–79 [Math. Notes, 1994, vol. 56, nos. 3–4, pp. 927–930].MathSciNetGoogle Scholar
  75. 75.
    Agrotis, M., Damianou, P. A., and Sophocleous, C., The Toda Lattices is Super-Integrable, arXiv:mathph/0507051v1, 20 Jul 2005.Google Scholar
  76. 76.
    Tsiganov, A.V., On an Integrable System Related to a Top and the Toda Lattice, Theor. mat. fiz., 2000, vol. 124, pp. 310–322.Google Scholar
  77. 77.
    Benenti, S., Chanu, C., and Rastelli, G., The Super-Separability of the Three-Body Inverse-Square Calogero System, J. Math. Phys., 2000, vol. 41, no. 7, pp. 4654–4678.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Smirnov, R. and Winternitz, P., Erratum: “A class of superintegrable systems of Calogero type” [J.Math. Phys., 2006, vol. 47, 093505], J. Math. Phys., 2007, vol. 48, no. 7, 079902, 1 p.Google Scholar
  79. 79.
    Gibbons, J. and Hermsen, Th., A Generallisation of the Calogero-Moser System, Phys. D, 1984, vol. 11, pp. 337–348.MATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Wojciechowski, S., An Integrable Marriage of the Euler Equations with the Calogero-Moser System, Phys. Lett. A, 1985, vol. 111, no. 3, pp. 101–103.CrossRefMathSciNetGoogle Scholar
  81. 81.
    Billey, E., Avan, J., and Babelon O., The r-Matrix Structure of the Euler-Calogero-Moser Model, arXiv:hep-th/9312042v1, 6 Dec 1993.Google Scholar
  82. 82.
    Billey E., Avan J., Babelon O., Exact Yangian Symmetry in the Classical Euler-Calogero-Moser Model, arXiv:hep-th/9401117v1, 24 Jan 1994.Google Scholar
  83. 83.
    Avan, J. and Billey, E., Observable Algebras for the Rational and Trigonometric Euler-Calogero-Moser Models, arXiv:hep-th/9404040v2, 26 Apr 1994.Google Scholar
  84. 84.
    Krichever, I., Babelon, O., Billey, E., and Talon, M., Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, arXiv:hep-th/9411160v1, 22 Nov 1994.Google Scholar
  85. 85.
    Li, L.-Ch. and Xu, P., Spin Calogero-Moser Systems Associated with Simple Lie Algebras, C. R. Acad. Sci. Paris Ser. I Math., 2000, vol. 331, no. 1, pp. 55–60.MATHMathSciNetGoogle Scholar
  86. 86.
    Gogilidze, S. A., Khvedelidze, A. M., Mladenov, D. M., and Pavel H.-P., Hamiltonian Reduction of SU(2) Dirac-Yang-Mills Mechanics, arXiv:hep-th/9707136v1, 15 Jul 1997.Google Scholar
  87. 87.
    Khvedelidze, A. and Mladenov, D., Euler-Calogero-Moser System from SU(2) Yang-Mills Theory, arXiv:hep-th/9906033v3, 20 Mar 2000.Google Scholar
  88. 88.
    Calogero, F. and Marchioro, C., Exact Solution of a One-Dimensional Three-Body Scattering Problem with Two-Body and/or Three-Body Inverse-Square Potentials, J. Math. Phys., 1974, vol. 15, pp. 1425–1430.CrossRefMathSciNetGoogle Scholar
  89. 89.
    Van Kampen, E.R. and Wintner, A., On a Symmetrical Canonical Reduction of the Problem of Three Bodies, Amer. J. Math., 1937, vol. 59, no. 1, pp. 153–166.CrossRefMathSciNetGoogle Scholar
  90. 90.
    Van Kampen, E.R. and Wintner, A., On the Reduction of Dynamical Systems by Means of Parametrized Invariant Relations, Trans. Amer. Math. Soc., 1938, vol. 44, no. 2, pp. 168–195.MATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    Anisimov S.I. and Lysikov Yu.I., On the Expansion of a Gas Cloud in Vacuum, Prikl. mat. mekh., 1970, vol. 34, pp. 926–929.Google Scholar
  92. 92.
    Kozlov, V.V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Berlin: Springer, 1996.Google Scholar
  93. 93.
    Kozlov, V.V. and Kolesnikov, N.N., Integrability of Hamiltonian systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1979, no. 6, pp. 88–91.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia

Personalised recommendations