Regular and Chaotic Dynamics

, Volume 13, Issue 6, pp 557–571 | Cite as

Chaplygin ball over a fixed sphere: an explicit integration

Jürgen Moser - 80


We consider a nonholonomic system describing the rolling of a dynamically nonsymmetric sphere over a fixed sphere without slipping. The system generalizes the classical nonholonomic Chaplygin sphere problem and it is shown to be integrable for one special ratio of radii of the spheres. After a time reparameterization the system becomes a Hamiltonian one and admits a separation of variables and reduction to Abel-Jacobi quadratures. The separating variables that we found appear to be a non-trivial generalization of ellipsoidal (spheroconic) coordinates on the Poisson sphere, which can be useful in other integrable problems. Using the quadratures we also perform an explicit integration of the problem in theta-functions of the new time.

Key words

Chaplygin ball explicit integration nonholonomic mechanics 

MSC2000 numbers

37J60 37J35 70H45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moser, J., Various Aspects of Integrable Hamiltonian Systems, Proc. CIME Conf. (Bressanone, 1978), also published in Progress of Mathematics, Vol. 8, Boston: Birkhäuser, 1980, pp. 233–289.Google Scholar
  2. 2.
    Moser, J., Geometry of Quadrics and Spectral Theory, The CHERN Symposium 1979, Berkely, New York: Springer Verlag, 1980, pp. 147–187.Google Scholar
  3. 3.
    Moser, J., Integrable Hamiltonian Systems and Spectral Theory, Fermi Lectures, Pisa 1981, Lezioni Fermiane, Acad. Nat. dei Lincei, Pisa, 1981. Reprinted in: Proc. 1983 Beijing Symposium on Differential Geometry and Differential Equations, ed. Liao Shantao, S.S. Chern, Science Press, Beijing, China 1986, pp. 157–229.Google Scholar
  4. 4.
    Chaplygin, S.A., On a Ball’s Rolling on a Horizontal Plane, Matematicheskiĭ sbornik (Mathematical Collection), 1903, vol. 24. [English translation: Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148.]
  5. 5.
    Borisov, A.V. and Mamaev, I.S., The Rolling of Rigid Body on a Plane and Sphere. Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 1, pp. 177–200.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kilin, A.A., The Dynamics of Chaplygin ball: the Qualitative and Computer Analisis, Regul. Chaotic Dyn., 2001, vol. 6, no. 3, pp. 291–306.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kharlamov, A.P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela (Topological Analysis of Integrable Problems of Rigid Body Dynamics), Leningrad. Univ., 1988.Google Scholar
  8. 8.
    Fedorov, Yu., A Complete Complex Solution of the Nonholonomic Chaplygin Sphere Problem, Preprint, 2007.Google Scholar
  9. 9.
    Kozlov, V.V., On the Integration Theory of Equations of Nonholonomic Mechanics, Adv. in Mech., 1985, vol. 8, no. 3, pp. 85–107 (in Russian). See also: Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 191–176.MathSciNetGoogle Scholar
  10. 10.
    Markeev, A.P., Integrability of a Problem on Rolling of Ball with Multiply Connected Cavity Filled by Ideal Liquid, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1986, vol. 21, no. 1, pp. 64–65 (in Russian).Google Scholar
  11. 11.
    Veselov, A.P. and Veselova, L.E., Integrable Nonholonomic Systems on Lie Groups, Math. Notes, 1988, vol. 44, no. 5–6, pp. 810–819 [Mat. Zametki, 1988, vol. 44, no. 5, pp. 604–619].MATHMathSciNetGoogle Scholar
  12. 12.
    Fedorov, Yu.N., Motion of a Rigid Body in a Spherical Suspension, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1988, no. 5, pp. 91–93 [Mosc. Univ. Mech. Bull., 1988, vol. 43, no. 5, pp. 54–58].Google Scholar
  13. 13.
    Borisov, A.V. and Fedorov, Y.N., On Two Modified Integrable Problems of Dynamics, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1995, no. 6, pp. 102–105 (in Russian).Google Scholar
  14. 14.
    Yaroshchuk, V.A., New Cases of the Existence of an Integral Invariant in a Problem on the Rolling of a Rigid Body, Without Slippage, on a Fixed Surface, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1992, no. 6, pp. 26–30 (in Russian).Google Scholar
  15. 15.
    Woronetz, P., Über die rollende Bewegung einer Kreisscheibe auf einer beliebigen Fläche unter der Wirkung von gegebenen Kräaften, Math. Annalen., 1909, Bd. 67, S. 268–280.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Woronetz, P., Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläache rollt, Math. Annalen., 1911, Bd. 70, S. 410–453.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Borisov, A.V. and Mamaev, I.S, Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.CrossRefGoogle Scholar
  18. 18.
    Fedorov, Yu.N, Integration of a Generalized Problem on the Rolling of a Chaplygin Ball, in Geometry, Differential Equations and Mechanics, Moskov. Gos. Univ., Mekh.-Mat. Fak., Moscow, 1985, pp. 151–155.Google Scholar
  19. 19.
    Borisov, A.V. and Mamaev, I.S., Rolling of a Non-homogeneous Ball over a Sphere Without Slipping and Twisting, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 153–159.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Borisov, A.V. and Mamaev, I.S., Isomorphism and Hamilton Representation of Some Nonholonomic Systems, Siberian Math. J., 2007, vol. 48, no. 1, pp. 26–36 [Sibirsk. Mat. Zh., 2007, vol. 48, no. 1, pp. 33–45]; Scholar
  21. 21.
    Fedorov, Yu., Classical Integrable Systems and Billiards Related to Generalized Jacobians, Acta Appl. Math., 1999, vol. 55, no. 3, pp. 251–301.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Clebsch, A. and Gordan, P., Theorie der abelschen Funktionen, Leipzig: Teubner, 1866.Google Scholar
  23. 23.
    Jacobi, K.G., Sur la rotation d’un corps, Gesamelte Werke, Vol. 2, 1884, pp. 139–172Google Scholar
  24. 24.
    Buchstaber, M., Enol’skii, V.Z., and Leikin, D.V., Kleinian Functions, Hyperelliptic Jacobians and Applications, Amer. Math. Soc. Transl. Ser. 2, vol. 179, Providence, USA, 1997.Google Scholar
  25. 25.
    Königsberger, L., Zur Transformation der Abelschen Functionen erster Ordnung. J. Reine Agew. Math., 1894, vol. 64, pp. 3–42.Google Scholar
  26. 26.
    Fay, J., Theta-Functions on Riemann Surfaces, Lecture Notes in Math., vol. 352, New York: Springer-Verlag, 1973.MATHGoogle Scholar
  27. 27.
    Mumford, D., Tata Lectures on Theta II, Progress in Math., vol. 43, Boston: Birkhauser, 1984.MATHGoogle Scholar
  28. 28.
    Eisenhart, L.P., Separable Systems of Stäckel, Annals of Mathematics, 1934, vol. 35, no. 2, pp. 284–305.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Marikhin, V.G. and Sokolov, V.V., On the Reduction of the Pair of Hamiltonians Quadratic in Momenta to Canonic Form and Real Partial Separation of Variables for the Clebsch Top, Rus. J. Nonlin. Dyn., 2008, vol. 4, no. 3, pp. 313–322.Google Scholar
  30. 30.
    Dubrovin, B.A., Theta-Functions and Non-linear Equations, Usp.Mat. Nauk, 1981, vol. 36, no. 2, pp. 11–80 [Russ. Math. Surveys,. 1981, vol. 36, pp. 11–92].MathSciNetGoogle Scholar
  31. 31.
    Chaplygin, S.A., On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Matematicheskii sbornik (Mathematical Collection), 1911, vol. 28, no. 1 [English transl.: Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376;].
  32. 32.
    Borisov, A.V. and Mamaev, I.S., The Chaplygin Problem of the Rolling Motion of a Ball Is Hamiltonian, Math. Notes, 2001, vol. 70, no. 5, pp. 720–723 [Mat. Zametki, 2001, vol. 70, no. 5, pp. 793–796].MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Borisov, A.V. and Mamaev, I.S., Dinamika tverdogo tela. Gamiltonovy metody, integriruemost’, khaos (Rigid Body Dynamics. Hamiltonian Methods, Integrability, Chaos), Moscow-Izhevsk: Inst. komp. issled., RCD, 2005.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • A. V. Borisov
    • 1
  • Yu. N. Fedorov
    • 2
  • I. S. Mamaev
    • 1
  1. 1.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia
  2. 2.Department de Matemáatica Aplicada IUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations