Regular and Chaotic Dynamics

, Volume 13, Issue 3, pp 221–233 | Cite as

Chaos in a restricted problem of rotation of a rigid body with a fixed point

  • A. V. Borisov
  • A. A. Kilin
  • I. S. Mamaev
Research Articles


In this paper, we consider the transition to chaos in the phase portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotization are indicated: (1) the growth of the homoclinic structure and (2) the development of cascades of period doubling bifurcations. On the zero level of the area integral, an adiabatic behavior of the system (as the energy tends to zero) is noted. Meander tori induced by the break of the torsion property of the mapping are found.

Key words

motion of a rigid body phase portrait mechanism of chaotization bifurcations 

MSC2000 numbers

70E17 65P30 83C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kozlov, V.V. and Treschev, D.V., Nonintegrability of the General Problem on the Rotation of a Dynamically Symmetric Heavy Body with a Fixed Point. II, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1986, no. 1, pp. 39–44.Google Scholar
  2. 2.
    Burov, A.A., On a “Restricted” Formulation of the Problem of the Motion of a Heavy Rigid Body, Prikl. Mat. Mekh., 2004, vol. 68, no. 6, pp. 958–963 [Engl. transl.: J. Appl. Math. Mech., 2004, vol. 68, no. 6, pp. 857–861].MathSciNetzbMATHGoogle Scholar
  3. 3.
    Borisov, A.V. and Simakov, N.N., Period Doubling Bifurcation in Rigid Body Dynamics, Regul. Chaotic Dyn., 1997, vol. 2, no. 1, pp. 64–75.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dovbysh, S.A., Numeric Study of Two Problems in Mechanics: Transversal Intersection of Separatrices and Kolmogorov Stability, in: Numeric Analysis, Mathematical Modelling and Their Applications in Mechanics, Moscow, 1988 (in Russian).Google Scholar
  5. 5.
    Borisov, A.V. and Dudoladov, S.L., Kovalevskaya Exponents and Poisson Structures, Regul. Chaotic Dyn., 1999, vol. 4, no. 3, pp. 13–20.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Borisov, A.V., Kilin, A.A., and Mamaev, I.S., Absolute and Relative Choreographies in Rigid Body Dynamics, Regul. Chaotic Dyn., 2008, vol. 13, no. 3, pp. 204–220 (Russian version: Rus. J. Nonlin. Dyn., 2005, vol. 1, no. 1, pp. 123–141).CrossRefMathSciNetGoogle Scholar
  7. 7.
    Parker, T.S. and Chua, L.O., Practical Numerical Algorithms for Chaotic Systems, New York: Springer-Verlag, 1989.zbMATHGoogle Scholar
  8. 8.
    Treschev, D.V., Introduction to the Perturbation Theory of Hamiltonian Systems, Moscow: Fazis, 1998 (in Russian).Google Scholar
  9. 9.
    Rimmer, R., Symmetry and Bifurcation of Fixed Points of Area Preserving Maps, J. Differential Equations, 1978, vol. 29, pp. 329–344.CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Kozlov, V.V., Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Berlin: Springer-Verlag, 1996.Google Scholar
  11. 11.
    Neishtadt, A.I., Change of an adiabatic invariant at a separatrix, J. Plasma Phys., 1986, vol. 12, no. 8, pp. 568–573.Google Scholar
  12. 12.
    Simó, C., Invariant Curves of Perturbations of Non-Twist Integrable Area Preserving Maps, Regul Chaot. Dyn., 1998, vol. 3, no. 3, pp. 180–195.CrossRefzbMATHGoogle Scholar
  13. 13.
    Simó, C. and Stuchi, T.J., Central Stable/Unstable Manifolds and the Destruction of KAM Tori in the Planar Hill Problem, 2000, Phys. D, 140, nos. 1–2, pp. 1–32.CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Feigenbaum, M.J., Greene, J.M., MacKay, R.S., and Vivaldi, V., Universal Behaviour in Families of Area-Preserving Maps, Phys. D, vol. 3D, 1981, pp. 468–486.MathSciNetGoogle Scholar
  15. 15.
    MacKay, R.S., Renormalisation in Area-Preserving Maps, River Edge, NJ: World Sci., 1993.zbMATHGoogle Scholar
  16. 16.
    Wiggins, S., Chaotic Transport in Dynamical Systems, New York: Springer-Verlag, 1992.zbMATHGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia

Personalised recommendations