On maximally superintegrable systems

  • A. V. Tsiganov
Research Articles


Locally any completely integrable system is maximally superintegrable system since we have the necessary number of the action-angle variables. The main problem is the construction of the single-valued additional integrals of motion on the whole phase space by using these multi-valued action-angle variables. Some constructions of the additional integrals of motion for the Stäckel systems and for the integrable systems related with two different quadratic r-matrix algebras are discussed. Among these system there are the open Heisenberg magnet and the open Toda lattices associated with the different root systems.

Key words

superintegrable systems Toda lattices Stackel systems 

MSC2000 numbers

37J35 53B20 


  1. 1.
    Superintegrability in Classical and Quantum Systems, Papers from the workshop held at the Université’ de Montréal, Montréal, QC, September 16–21, 2002. Edited by P. Tempesta, P. Winternitz, J. Harnad, W. Miller, Jr., G. Pogosyan and M. Rodriguez, vol. 37 of CRM Proceedings & Lecture Notes, Providence, RI: American Mathematical Society, 2004.MATHGoogle Scholar
  2. 2.
    Nekhoroshev, M.N., Action-Angle Variables and Their Generalizations, vol. 26 of Trans. Moscow Math. Soc., 1972, pp. 180–198.Google Scholar
  3. 3.
    Henrici, A. and Kappeler, T., Global Action-Angle Variables for the Periodic Toda Lattice, Preprint: arXiv:0802.4032, 2008.Google Scholar
  4. 4.
    Stäckel, P., Comptes Rendus, vol. 116 and vol. 121, p. 485, p. 1284 and p. 489, 1893 and 1895.Google Scholar
  5. 5.
    Tsiganov, A.V., The Stäckel Systems and Algebraic Curves, J. Math. Phys., 1999, vol. 40, pp. 279–298.CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Tsiganov, A.V., Duality Between Integrable Stäckel Systems, J. Phys. A., 1999, vol. 32, pp. 7965–7982.CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Buchstaber, V.M., Enolskii, V.Z., and Leykin, D.V., Kleinian Functions, Hyperelliptic Jacobians and Applications, Reviews in Mathematics and Mathematical Physics, 1997, vol. 10. pp. 1–125.Google Scholar
  8. 8.
    Dubrovin, B.A., Theta-Functions and Nonlinear Equations, Uspekhi Mat. Nauk, 1981, vol. 36, no. 2(218), pp. 11–80.MathSciNetGoogle Scholar
  9. 9.
    Grigoryev, Yu.A. and Tsiganov, A.V., Symbolic Software for Separation of Variables in the Hamilton-Jacobi Equation for the L-Systems, Regul. Chaotic Dyn., 2005, vol. 10, pp. 413–422. CrossRefMathSciNetGoogle Scholar
  10. 10.
    Tsiganov, A.V., On the Drach Superintegrable Systems, J. Phys. A., 2000, vol. 33, pp. 7407–7423.CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Sklyanin, E.K., The Quantum Toda Chain, vol. 226 of Lecture Notes in Phys., 1985, pp. 196–293.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sklyanin, E.K., Separation of Variables—New Trends. Quantum Field Theory, Integrable Models and Beyond (Kyoto, 1994), Progr. Theoret. Phys. Suppl., No. 118, 1995, pp. 35–60.Google Scholar
  13. 13.
    Tsiganov, A.V., A Family of the Poisson Brackets Compatible with the Sklyanin Bracket, J. Phys. A, 2002, vol. 40, pp. 4803–4816.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Smirnov, F.A., Structure of Matrix Elements in Quantum Toda Chain, J. Phys. A., 1988, vol. 31, pp. 8953–8971.CrossRefGoogle Scholar
  15. 15.
    Agrotis, M., Damianou, P.A., and Sophocleous, C., The Toda Lattice is Super-Integrable, Phys. A., 2006, vol. 365, pp. 235–243.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Degiovanni, L., A Note on the Superintegrability of the Toda Lattice, Preprint: arXiv:nlin/0606072, 2006.Google Scholar
  17. 17.
    Tsiganov, A.V., The Poisson Bracket Compatible with the Classical Reflection Equation Algebra, Regul. Chaotic Dyn., 2008, vol. 13, pp. 191–203.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Sklyanin, E.K., Boundary Conditions for Integrable Quantum Systems, J. Phys. A., 1988, vol. 21, pp. 2375–2389.CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Sokolov, V.V. and Tsiganov, A.V., Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models, Teoret. Mat. Fiz., 2002, vol. 133, no. 3, pp. 485–500 [English transl.: Theoret. and Math. Phys., 2002, vol. 133, no. 3, pp. 1730–1743].MathSciNetGoogle Scholar
  20. 20.
    Tsiganov, A.V., Toda Chains in the Jacobi Method, Teor. Math. Phys., 2004, vol. 139, pp. 636–652.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.V.A. Fock Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations