Regular and Chaotic Dynamics

, Volume 12, Issue 1, pp 27–38 | Cite as

Symmetry of the restricted 4 + 1 body problem with equal masses

  • A. A. Santos
  • C. Vidal
Research Articles


We consider the problem of symmetry of the central configurations in the restricted 4 + 1 body problem when the four positive masses are equal and disposed in symmetric configurations, namely, on a line, at the vertices of a square, at the vertices of a equilateral triangle with a mass at the barycenter, and finally, at the vertices of a regular tetrahedron [1–3]. In these situations, we show that in order to form a non collinear central configuration of the restricted 4 + 1 body problem, the null mass must be on an axis of symmetry. In our approach, we will use as the main tool the quadratic forms introduced by A. Albouy and A. Chenciner [4]. Our arguments are general enough, so that we can consider the generalized Newtonian potential and even the logarithmic case. To get our results, we identify some properties of the Newtonian potential (in fact, of the function ϕ(s) = −s k, with k < 0) which are crucial in the proof of the symmetry.

MSC2000 numbers

37C75 34D20 34A25 


n-body problem central configurations symmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buck, G., The Collinear Central Configuration of n Equal Masses, Celestial Mech. Dynam. Astronom., 1991, vol. 51, pp. 305–317.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Albouy, A., Symétrie des Configurations Centrales de Quatre Corps, C. R. Acad. Sci., Série 1, Math., 1995, vol. 320, pp. 217–220.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Saari, D., On the Role and Properties of n Body Central Configurations, Celestial Mech., 1980, vol. 21, pp. 9–20.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Albouy, A. and Chenciner, A., Le Problème des N corps et les Distances Mutuelles. Invent. Math., 1997, vol. 131, pp. 151–184.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Albouy, A., On a Paper of Moeckel on Central Configurations, Regul. Chaotic Dyn., 2003, vol. 8, pp. 133–142.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Wintner, A., The Analytical Foundations of Celestial Mechanics, vol. 5 of Princeton Mathematical Series, Princeton: Princeton Univ. Press, 1941.Google Scholar
  7. 7.
    Smale, S., Topology and Mechanics II, Invent. Math., 1970, vol. 11, pp. 45–64.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    McGehee, R., Triple Collision in the Collinear Three-Body Problem, Invent. Math., 1974, vol. 27, pp. 191–227.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bang, D. and Elmabsout, B., Restricted N + 1 Body Problem: Existence and Stability of Relative Equilibria, Celestial Mech. Dynam. Astronom., 2004, vol. 89, pp. 305–318.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Leandro, E., On the Dziobek Configurations of the Restricted (N + 1)-Body Problem with Equal Masses, submitted for publication in Proceedings of the Saarifest: International Conference in the Honour of Don Saari’s 65th Aniversary, Guanajuato, CIMAT.Google Scholar
  11. 11.
    Santos, A., Dziobek’s Configurations in Restricted Problems and Bifurcation, Celestial Mech. Dynam. Astronom., 2004, vol. 90, pp. 213–238.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Moulton, F.R., The Straight Line Solutions of the Problem of N Bodies, Annals of Mathematics, 1910, vol. 12, pp. 1–17.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Albouy, A., The Symmetric Central Configurations of Four Equal Masses, Contemporary Mathematics., 1996, vol. 198, pp. 131–135.MathSciNetGoogle Scholar
  14. 14.
    Albouy, A., Recherches sur le Problème des Configurations Centrales. Notes Scientifiques et Techniques du Bureau des Longitudes, 1997, Paris: Bureau des Longitudes.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. A. Santos
    • 1
  • C. Vidal
    • 2
  1. 1.Departamento de MatemáticaUniversidade Federal de SergipeSāo Cristóvāo-SE, CEPBrazil
  2. 2.Departamento de Maternática, Facultad de CienciasUniversidad del Bío BíoConcepción, VIII-RegiónChile

Personalised recommendations