Polymer Science, Series B

, Volume 61, Issue 5, pp 680–690 | Cite as

Synthesis and the Swelling Behavior of Sodium Alginate Graft Poly (Acrylic Acid-co-acrylamide)/Graphite Oxide Super Absorbent Composite

  • Linhui ZhuEmail author
  • Yu Liu
  • Bin Zhou
  • Hongduo Tang
  • Fangyuan Wang
  • Chengdong Guan


Sodium alginate graft poly(acrylic acid-co-acrylamide)/graphite oxide (P(AA-co-AM)/GO) super absorbent composite was prepared by solution intercalation copolymerization of acrylic acid (AA), acrylamide (AM) and graphite oxide (GO). The composite was characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, transmission electron microscope and differential scanning calorimetry. The effect of reaction conditions, including the mass ratio of monomers, dosages of cross-linker, initiator and GO as well as the neutralization degree of AA, on the absorption capacities of deionized water and 0.9% NaCl was studied. Water retention properties of the composite were also discussed. It was deduced that the interactions between GO and P(AA-co-AM) copolymer were the intermolecular hydrogen bonds. Thermal stabilities of the composite could be improved by the incorporation of GO. Above all, there was a remarkable improvement of absorption capacities owing to the incorporation of GO. Absorption capacities of water and 0.9% NaCl could be improved from 298.6 and 79.2 g/g, respectively, to 870.5 and 183.3 g/g, respectively, as the dosage of GO increased from 0 to 0.1 g. In addition, there was a remarkable improvement of water retention rates. After drying at 25°C for 8 h the water retention rates could be improved up to 17.9% with the incorporation of GO.


  1. 1.
    H. Hadas and S. Simcha, Biomacromolecules 17, 2160 (2016).CrossRefGoogle Scholar
  2. 2.
    X. Hu, W. Cheng, W. Nie, and Z. Shao, Polym. Adv. Technol. 26, 1340 (2015).CrossRefGoogle Scholar
  3. 3.
    L. H. Zhu, L. L. Zhang, Y. J. Tang, D. Ma, and J. Yang, J. Elastomers Plast. 47, 488 (2015).CrossRefGoogle Scholar
  4. 4.
    L. H. Zhu, L. L. Zhang, and Y. J. Tang, Polym. Polym. Compos. 22, 417 (2014).Google Scholar
  5. 5.
    L. H. Zhu, L. L. Zhang, Y. J. Tang, and X. Y. Kou, Polym.-Plast. Technol. Eng. 53, 74 (2014).CrossRefGoogle Scholar
  6. 6.
    Y. Tang, Q. Wang, B. Zhou, D. Ma, Z. Ma, and L. Zhu, Polym. Polym. Compos. 23, 467 (2015).Google Scholar
  7. 7.
    L. Zhu, C. Guan, B. Zhou, Z. Zhang, R. Yang, Y. Tang, and J. Yang, Polym. Polym. Compos. 25, 627 (2017).Google Scholar
  8. 8.
    Y. Assem, A. I. Khalaf, A. M. Rabia, A. A. Yehia, and T. A. Zidan, Polym. Bull. 74, 3015 (2017).CrossRefGoogle Scholar
  9. 9.
    L. Zhu, L. Zhang, and Y. Tang, Bull. Korean. Chem. Soc. 33, 1669 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Tang, D. Ma, and L. Zhu, Polym.-Plast. Technol. Eng. 53, 851 (2014).CrossRefGoogle Scholar
  11. 11.
    Y. Tang, T. He, Y. Liu, B. Zhou, R. Yang, and L. Zhu, Adv. Polym. Technol. 37, 2568 (2018).CrossRefGoogle Scholar
  12. 12.
    Y. Tang, R. Yang, D. Ma, B. Zhou, L. Zhu, J. Yang, Polym. Polym. Compos. 26, 161 (2018).Google Scholar
  13. 13.
    S. Kumari, A. Panigrahi, S. K. Singh, and S. K. Pradhan, J. Coat. Technol. Res. 15, 583 (2018).CrossRefGoogle Scholar
  14. 14.
    W. Chen, Q. Liu, X. Zhu, and M. Fu, RSC Adv. 7, 40650 (2017).Google Scholar
  15. 15.
    L. Zhu, Y. Liu, F. Wang, T. He, Y. Tang, and J. Yang, Adv. Polym. Technol. 37, 2885 (2018).CrossRefGoogle Scholar
  16. 16.
    C. Hu, G. Zhang, H. Li, C. Zhang, and Y. Chang, RSC Adv. 7, 22071 (2017).Google Scholar
  17. 17.
    Y. Han, T. Wang, T. Li, X. Gao, and W. Li, Carbon 119, 111 (2017).CrossRefGoogle Scholar
  18. 18.
    L. F. Zhao, Q. Li, R. L. Zhang, X. J. Tian, and L. Liu, Chin. J. Polym. Sci. 34, 111 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. Tang, C. Guan, Y. Liu, Z. Zhang, B. Li, and L. Zhu, Polym. Bull. 76, 1383 (2019).CrossRefGoogle Scholar
  20. 20.
    L. Zhu, F. Wang, Y. Liu, H. Tang, and C. Guan, Adv. Polym. Technol. 37, 3680 (2018).CrossRefGoogle Scholar
  21. 21.
    I. Calina, M. Demeter, C. Vancea, A. Scarisoreanu and V. Meltzer, J. Macromol. Sci., Part A: Pure Appl. Chem. 55, 260 (2018).CrossRefGoogle Scholar
  22. 22.
    L. Zhang, S. Tu, H. Wang, and Q. Du, Compos. Sci. Technol. 154, 1 (2018).CrossRefGoogle Scholar
  23. 23.
    Y. Luan, X. Zhang, S. Jiang, J. Chen, and Y. Lyu, Chin. J. Polym. Sci. 36, 584 (2018).CrossRefGoogle Scholar
  24. 24.
    L. Qi, H. Shamsi Jazeyi, G. Ruan, J. A. Mann, Y. Lin, C. Song, Y. Ma, L. Wang, J. M. Tour, G. J. Hirasaki, and R. Verduzco, Energy Fuels 31, 1339 (2017).CrossRefGoogle Scholar
  25. 25.
    W. Hummers and R. Offema, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  26. 26.
    Y. Liu, Y. Yang, and S. Li, J. Mater. Chem. A 4, 18134 (2016).CrossRefGoogle Scholar
  27. 27.
    W. F. Lee and Y. C. Chen, Eur. Polym. J. 41, 1605 (2005).CrossRefGoogle Scholar
  28. 28.
    A. A. Alhwaige, T. Agag, H. Ishida, and S. Qutubuddin, Biomacromolecules 14, 1806 (2013).CrossRefGoogle Scholar
  29. 29.
    H. Q. Chang, H. Liang, F. S. Qu, S. L. Shao, H. R. Yu, B. Liu, W. Gao, and G. B. Li, J. Membr. Sci. 499, 429 (2016).CrossRefGoogle Scholar
  30. 30.
    D. Rui and L. L. Liu, Appl. Surf. Sci. 368, 378 (2016).CrossRefGoogle Scholar
  31. 31.
    S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, ACS Nano 2, 572 (2008).CrossRefGoogle Scholar
  32. 32.
    J. Filip, A. Andicsová-Eckstein, A. Vikartovská, and J. Tkac, Biosens. Bioelectron. 89, 384 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Linhui Zhu
    • 1
    Email author
  • Yu Liu
    • 1
  • Bin Zhou
    • 1
  • Hongduo Tang
    • 1
  • Fangyuan Wang
    • 1
  • Chengdong Guan
    • 1
  1. 1.College of Chemical and Environmental Engineering, Shandong University of Science and TechnologyQingdao, ShandongChina

Personalised recommendations