Polymer Science, Series B

, Volume 61, Issue 5, pp 622–628 | Cite as

Synthesis and Porous Structure of Addition Polymer Based on Dicyclopentadiene

  • A. I. Wozniak
  • E. V. Bermesheva
  • N. N. Gavrilova
  • M. V. BermeshevEmail author


A simple two-stage scheme is proposed for the synthesis of a new porous polymeric material based on dicyclopentadiene, an industrial product and one of the most accessible derivatives of norbornene. The selective addition polymerization of dicyclopentadiene, a bifunctional monomer, proceeds via opening of only one endocyclic double bond and the subsequent hydrogenation of the synthesized product makes it possible to obtain a saturated polymeric material with a high specific surface area (425 m2/g). The porous structure of the hydrogenated addition polydicyclopentadiene is studied in comparison with a similar polymer before hydrogenation using low-temperature nitrogen adsorption/desorption and X-ray powder diffraction. It is shown that the polymeric material obtained has a high thermal stability.



This study was performed within the framework of the State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1.
    N. B. McKeown, B. Gahnem, K. J. Msayib, P. M. Budd, C. E. Tattershall, K. Mahmood, S. Tan, D. Book, H. W. Langmi, and A. Walton, Angew. Chem. 118, 1836 (2006).CrossRefGoogle Scholar
  2. 2.
    B. Li, H.-M. Wen, W. Zhou, and B. Chen, J. Phys. Chem. Lett. 5, 3468 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    R. E. Morris and P. S. Wheatley, Angew. Chem., Int. Ed. 47, 4966 (2008).CrossRefGoogle Scholar
  4. 4.
    H. J. Mackintosh, P. M. Budd, and N. B. McKeown, J. Mater. Chem. 18, 573 (2008).CrossRefGoogle Scholar
  5. 5.
    L. L. Welbes, R. C. Scarrow, and A. S. Borovik, Chem. Commun. 2004, 2544 (2004).CrossRefGoogle Scholar
  6. 6.
    Z.-X. Low, P. M. Budd, N. B. McKeown, and D. A. Patterson, Chem. Rev. 118, 5871 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    M. V. Bermeshev and P. P. Chapala, Prog. Polym. Sci. 84, 1 (2018).CrossRefGoogle Scholar
  8. 8.
    S. Kim and Y. M. Lee, Prog. Polym. Sci. 43, 1 (2015).CrossRefGoogle Scholar
  9. 9.
    K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, Prog. Polym. Sci. 26, 721 (2001).CrossRefGoogle Scholar
  10. 10.
    P. M. Budd, B. Ghanem, K. Msayib, N. B. McKeown, and C. Tattershall, J. Mater. Chem. 13, 2721 (2003).CrossRefGoogle Scholar
  11. 11.
    M. O. Adebajo, R. L. Frost, J. T. Kloprogge, O. Carmody, and S. Kokot, J. Porous Mater. 10, 159 (2003).CrossRefGoogle Scholar
  12. 12.
    S. Gupta and N.-H. Tai, J. Mater. Chem. A 4, 1550 (2016).CrossRefGoogle Scholar
  13. 13.
    P. P. Chapala, M. V. Bermeshev, and N. N. Gavrilova, Polym. Sci., Ser. A 59, 143 (2017).CrossRefGoogle Scholar
  14. 14.
    H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc. 131, 8875 (2009).CrossRefGoogle Scholar
  15. 15.
    H.-C. Zhou, J. R. Long, and O. M. Yaghi, Chem. Rev. 112, 673 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    K. Takada, H. Matsuya, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30, 1605 (1985).CrossRefGoogle Scholar
  17. 17.
    N. B. McKeown and P. M. Budd, Chem. Soc. Rev. 35, 675 (2006).CrossRefGoogle Scholar
  18. 18.
    S. H. Han, N. Misdan, S. Kim, C. M. Doherty, A. J. Hill, and Y. M. Lee, Macromolecules 43, 7657 (2010).CrossRefGoogle Scholar
  19. 19.
    D. A. Alentiev, M. V. Bermeshev, L. E. Starannikova, E. V. Bermesheva, V. P. Shantarovich, V. G. Bekeshev, Y. P. Yampolskii, and E. S. Finkelshtein, J. Polym. Sci., Part A: Polym. Chem. 56, 1234 (2018).CrossRefGoogle Scholar
  20. 20.
    A. I. Wozniak, E. V. Bermesheva, N. N. Gavrilova, I. R. Ilyasov, M. S. Nechaev, A. F. Asachenko, M. A. Topchiy, P. S. Gribanov, and M. V. Bermeshev, Macromol. Chem. Phys. 219, 1800323 (2018).CrossRefGoogle Scholar
  21. 21.
    N. Du, M. M. Dal-Cin, G. P. Robertson, and M. D. Guiver, Macromolecules 45, 5134 (2012).CrossRefGoogle Scholar
  22. 22.
    Q. Liu, G. Li, Z. Tang, L. Chen, B. Liao, B. Ou, Z. Zhou, and H. Zhou, Mater. Chem. Phys., No. 25, 11 (2017).Google Scholar
  23. 23.
    J.-Y. Lee, C. D. Wood, D. Bradshaw, M. J. Rosseinsky, and A. I. Cooper, Chem. Commun., No. 25, 2670 (2006).Google Scholar
  24. 24.
    C. D. Smith, J. Am. Chem. Soc. 88, 4273 (1966).CrossRefGoogle Scholar
  25. 25.
    V. A. Petrov and N. V. Vasil’ev, Curr. Org. Synth. 3, 215 (2006).CrossRefGoogle Scholar
  26. 26.
    P. P. Chapala, M. V. Bermeshev, V. G. Lakhtin, A. M. Genaev, A. N. Tavtorkin, and E. S. Finkelshtein, Mendeleev Commun. 25, 344 (2015).CrossRefGoogle Scholar
  27. 27.
    K. C. Nicolaou, S. A. Snyder, T. Montagnon, and G. Vassilikogiannakis, Angew. Chem., Int. Ed. 41, 1668 (2002).CrossRefGoogle Scholar
  28. 28.
    M. V. Bermeshev, B. A. Bulgakov, A. M. Genaev, J. V. Kostina, G. N. Bondarenko, and E. S. Finkelshtein, Macromolecules 47, 5470 (2014).CrossRefGoogle Scholar
  29. 29.
    N. G. Gaylord, A. B. Deshpande, B. M. Mandal, and M. Martan, J. Macromol. Sci., Part A: Pure Appl. Chem. 11, 1053 (1977).CrossRefGoogle Scholar
  30. 30.
    G. C. Vougioukalakis and R. H. Grubbs, Chem. Rev. 110, 1746 (2010).CrossRefGoogle Scholar
  31. 31.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, N. A. Belov, V. E. Ryzhikh, V. P. Shantarovich, V. G. Lakhtin, N. N. Gavrilova, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 48, 8055 (2015).CrossRefGoogle Scholar
  32. 32.
    P. Chapala, M. Bermeshev, L. Starannikova, V. Shantarovich, N. Gavrilova, V. Lakhtin, Y. Yampolskii, and E. Finkelshtein, Macromol. Chem. Phys. 218, 1600385/1 (2017).Google Scholar
  33. 33.
    E. Finkelshtein, M. Gringolts, M. Bermeshev, P. Chapala, and Y. Rogan, in Membrane Materials for Gas and Vapor Separation, Ed. by Y. Yampolskii and E. Finkelshtein (Wiley, London, 2017), p. 143.Google Scholar
  34. 34.
    D. A. Alentiev, E. S. Egorova, M. V. Bermeshev, L. E. Starannikova, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, Y. P. Yampolskii, and E. S. Finkelshtein, J. Mater. Chem. A 6, 19393 (2018).CrossRefGoogle Scholar
  35. 35.
    E. Yakubenko, A. Korolev, P. Chapala, M. Bermeshev, A. Kanateva, and A. Kurganov, Anal. Chim. Acta 986, 153 (2017).CrossRefGoogle Scholar
  36. 36.
    A. A. Korolev, V. E. Shiryaeva, T. P. Popova, M. V. Bermeshev, A. Y. Kanateva, and A. A. Kurganov, J. Chromatogr. A 1533, 174 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    D. A. Alentiev, D. M. Dzhaparidze, N. N. Gavrilova, V. P. Shantarovich, E. V. Kiseleva, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, S. A. Legkov, G. N. Bondarenko, and M. V. Bermeshev, Polymers 10, 1382 (2018).CrossRefGoogle Scholar
  38. 38.
    L. Friedman, R. L. Litle, and W. R. Reichle, Org. Synth. 40, 93 (1960).CrossRefGoogle Scholar
  39. 39.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, V. P. Shantarovich, N. N. Gavrilova, V. G. Avakyan, M. P. Filatova, Y. P. Yampolskii, and E. S. Finkelshtein, Polymer Composites 36, 1029 (2015).CrossRefGoogle Scholar
  40. 40.
    A. Rapallo, W. Porzio, G. Zanchin, G. Ricci, and G. Leone, Chem. Mater. (2019) (in press).Google Scholar
  41. 41.
    A. Rapallo, G. Ricci, W. Porzio, G. Arrighetti, and G. Leone, Cryst. Growth Des. 14, 5767 (2014).CrossRefGoogle Scholar
  42. 42.
    E. J. Lee, H. S. Kim, B. K. Lee, W. S. Hwang, I. K. Sung, and I. M. Lee, Bull. Korean Chem. Soc. 33, 4131 (2012).CrossRefGoogle Scholar
  43. 43.
    C.-T. Zhao, M. do Rosário Ribeiro, M. N. de Pinho, V. S. Subrahmanyam, C. L. Gil, and A. P. de Lima, Polymer 42, 2455 (2001).CrossRefGoogle Scholar
  44. 44.
    P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, and D. Wang, Adv. Mater. 16, 456 (2004).CrossRefGoogle Scholar
  45. 45.
    P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, and C. E. Tattershall, Chem. Commun. 2004, 230 (2004).CrossRefGoogle Scholar
  46. 46.
    H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, Science 318, 254 (2007).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Wozniak
    • 1
  • E. V. Bermesheva
    • 1
    • 2
  • N. N. Gavrilova
    • 3
  • M. V. Bermeshev
    • 1
    • 3
    Email author
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian FederationMoscowRussia
  3. 3.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations