Advertisement

Polymer Science, Series B

, Volume 61, Issue 5, pp 511–518 | Cite as

Anionic Polymerization of Acrylonitrile Using a Flow Microreactor System

  • Xiaolin Shi
  • Jingyang JiangEmail author
POLYMERIZATION
  • 15 Downloads

Abstract

A simple flow microreactor system has been applied in the anionic polymerization of acrylonitrile initiated by lithium diisopropylamide. Polyacrylonitrile (PAN) with high molecular weight and narrow molecular weight distribution (MWD) has been obtained successfully in the system for the first time. A better control over the MWD of obtained PAN has achieved (1.49–1.93) compared with that in conventional lab-scale reactors (MWD = 2.00–2.46). Side reactions could be suppressed obviously even at higher temperatures, which was demonstrated by the 1H NMR spectra. Furthermore, the polymerization time could be regulated conveniently in the flow microreactor system and the living feature of the polymerization has been verified from the relationship of monomer conversion and molecular weight of PAN products obtained at different reaction time.

Notes

Supplementary material

11499_2019_10072_MOESM1_ESM.pdf (525 kb)
11499_2019_10072_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    K. Jähnisch, V. Hessel, H. Löwe, and M. Baerns, Angew. Chem., Int. Ed. 43, 406 (2004).CrossRefGoogle Scholar
  2. 2.
    J. Yoshida, A. Nagaki, and T. Yamada, Chem.-Eur. J. 14, 7450 (2008).CrossRefGoogle Scholar
  3. 3.
    C. Tonhauser, A. Natalello, H. Löwe, and H. Frey, Macromolecules 45, 9551 (2012).CrossRefGoogle Scholar
  4. 4.
    T. Illg, P. Löb, and V. Hessel, Bioorg. Med. Chem. 18, 3707 (2010).CrossRefGoogle Scholar
  5. 5.
    F. Bally, C. A. Serra, V. Hessel, and G. Hadziioannou, Macromol. React. Eng. 4, 543 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Mae, Chem. Eng. Sci. 62, 4842 (2007).CrossRefGoogle Scholar
  7. 7.
    F. Bally, C. A. Serra, V. Hessel,and G. Hadziioannou, Chem. Eng. Sci. 66, 1449 (2011).CrossRefGoogle Scholar
  8. 8.
    T. Iwasaki and J. Yoshida, Macromolecules 38, 1159 (2005).CrossRefGoogle Scholar
  9. 9.
    C. Serra, N. Sary, G. Schlatter, G. Hadziioannou, and V. Hessel, Lab Chip 5, 966 (2005).CrossRefGoogle Scholar
  10. 10.
    C. Serra, G. Schlatter, N. Sary, F. Schönfeld, and G. Hadziioannou, Microfluid. Nanofluid. 3, 451 (2007).CrossRefGoogle Scholar
  11. 11.
    L. Qiu, K. Wang, S. Zhu, Y. Lu, and G. Luo, Chem. Eng. J. 284, 233 (2016).CrossRefGoogle Scholar
  12. 12.
    C. Rosenfeld, C. Serra, C. Brochon, V. Hessel, and G. Hadziioannou, Chem. Eng. J. 135S, S242 (2008).CrossRefGoogle Scholar
  13. 13.
    P. Derboven, P. H. M. Van Steenberge, J. Vandenbergh, M. F. Reyniers, T. Junkers, D. R. D’hooge, and G. B. Marin, Macromol. Rapid Commun. 36, 2149 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Parida, C. A. Serra, F. Bally, D. K. Garg, and Y. Hoarau, Green Process. Synth. 1, 525 (2012).Google Scholar
  15. 15.
    A. Nagaki, T. Iwasaki, K. Kawamura, D. Yamada, S. Suga, T. Ando, M. Sawamoto, and J. Yoshida, Chem.-Asian J. 3, 1558 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Nagaki, M. Takumi, Y. Tani, and J.-I. Yoshida, Tetrahedron 71, 5973 (2015).CrossRefGoogle Scholar
  17. 17.
    A. Nagaki, Y. Nakahara, M. Furusawa, T. Sawaki, T. Yamamoto, H. Toukairin, S. Tadokoro, T. Shimazaki, T. Ito, M. Otake, H. Arai, N. Toda, K. Ohtsuka, Y. Takahashi, Y. Moriwaki, Y. Tsuchihashi, K. Hirose, and J.-I. Yoshida, Org. Process Res. Dev. 20, 1377(2016).CrossRefGoogle Scholar
  18. 18.
    K. Iida, T. Q. Chastek, K. L. Beers, K. A. Cavicchi, J. Chun, and M. J. Fasolka, Lab Chip 9, 339 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Nagaki, Y. Tomida, and J. Yoshida, Macromolecues 41, 6322 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Nagaki, Y. Tomida, A. Miyazaki, and J. Yoshida, Macromolecules 42, 4384 (2009).CrossRefGoogle Scholar
  21. 21.
    A. Nagaki, A. Miyazaki, and J. Yoshida, Macromolecules 43, 8424 (2010).CrossRefGoogle Scholar
  22. 22.
    A. K. Gupta, D. K. Paliwal, and P. Bajaj, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C31, 1 (1991).Google Scholar
  23. 23.
    P. Rajalingam and G. Radhakrishnan, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C31, 301 (1991).CrossRefGoogle Scholar
  24. 24.
    C. D. E. Lakeman, G. Pan, N. Muto, M. Miyayama, H. Yanagida, and D. A. Payne, Mater. Lett. 13, 330 (1992).CrossRefGoogle Scholar
  25. 25.
    J. S. Tsai and C. H. Lin, J. Appl. Polym. Sci. 42, 3045 (1991).CrossRefGoogle Scholar
  26. 26.
    A. V. Novoselova, V. V. Shamanin, and L. V. Vinogradova, Polym. Sci., Ser. B 51, 205 (2009).CrossRefGoogle Scholar
  27. 27.
    L. K. J. Tong and W. O. Kenyon, J. Am. Chem. Soc. 69, 2245 (1947).CrossRefGoogle Scholar
  28. 28.
    X. Shi and J. Jiang, Chin. Chem. Lett. 30, 473 (2019).CrossRefGoogle Scholar
  29. 29.
    H. Gilman and F. K. Cartledge, J. Organomet. Chem. 2, 447 (1964).CrossRefGoogle Scholar
  30. 30.
    R. L. Cleland and W. H. Stockmayer, J. Polym. Sci. 17, 473 (1955).CrossRefGoogle Scholar
  31. 31.
    H. Dong, W. Tang, and K. Matyjaszewski, Macromolecules 40, 2974 (2007).CrossRefGoogle Scholar
  32. 32.
    A. S. Galiano-Roth and D. B. Collum, J. Am. Chem. Soc. 111, 6772 (1989).CrossRefGoogle Scholar
  33. 33.
    F. Wurm, D. Wilms, J. Klos, H. Löwe, and H. Frey, Macromol. Chem. Phys. 209, 1106 (2008).CrossRefGoogle Scholar
  34. 34.
    Q. Wang, J. Wang, W. Yu, L. Shao, and J. Chen., J. Beijing Univ. Chem. Technol., Nat. Sci. Ed. 3, 1 (2009).Google Scholar
  35. 35.
    A. Ottolenghi and A. Zilkha, J. Polym. Sci. 1, 687 (1963).CrossRefGoogle Scholar
  36. 36.
    S. K. Varshney, J. P. Hautekeer, R. Fayt, R. Jerome, and P. Teyssie, Macromolecules 23, 2618 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Fine Chemicals, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of TechnologyDalianChina

Personalised recommendations