Polymer Science, Series B

, Volume 61, Issue 5, pp 560–566 | Cite as

Preparation of Phase Change Microcapsules with Inorganic/Polymer Hybrid Shell Through a “Two-Step” Reaction

  • Xuyang Ji
  • Jian Chen
  • Guangzhou Dang
  • Yaqian Zhang
  • Jieying Yang
  • Wenjing Li
  • Yingmin ZhaoEmail author
  • Zhaoguo JinEmail author


In this study, a novel phase-change microcapsule with hybrid shell was prepared via a “two-step” reaction in an emulsion system. In the process, methacryloxy propyl trimethoxyl silane and methyl methacrylate were used as a precursor shell material and octadecane as the core material. Scanning electron microscope, thermogravimetric analyzer, differential scanning calorimetry and energy dispersive X-ray spectroscopy were employed to characterize the morphology, latent heat property and component of the shell of microcapsules, respectively. The results showed that the shell of microcapsules was composed of silicon and P(MMA-co-DVB), with the core material content of the microcapsules over 80%, and the size of microcapsules could be controlled by varying the content of the surfactant.



We acknowledge the China Aerospace Science and Industry Corporation for providing necessary financial support.



The authors declare that they have no conflict of interest.


  1. 1.
    B. Zalba, J. M. Marin, L. F. Cabeza, and H. Mehling, Appl. Therm. Eng. 23, 251 (2003).CrossRefGoogle Scholar
  2. 2.
    A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Renew. Sust. Energ. Rev. 13, 318 (2009).CrossRefGoogle Scholar
  3. 3.
    A. M. Khudhair and M. M. Farid, Energy Convers. Manage. 45, 263 (2004).CrossRefGoogle Scholar
  4. 4.
    M. Kenisarin and K. Mahkamov, Renewable Sustainable Energy Rev. 11, 1913 (2007).CrossRefGoogle Scholar
  5. 5.
    Z. W. Huang, N. Xie, Z. G. Luo, X. N. Gao, X. M. Fang, Y. T. Fang, and Z. H. Zhang, Sol. Energy Mater. Sol. Cells 179, 152 (2018).CrossRefGoogle Scholar
  6. 6.
    Y. T. Huo and Z. H. Rao, Energy Convers. Manage. 133, 204 (2017).CrossRefGoogle Scholar
  7. 7.
    L. Bayes-Garcia, L. Ventola, R. Cordobilla, R. Benages, T. Calvet, and M. A. Cuevas-Diarte, Sol. Energy Mater Sol. Cells 94, 1235 (2010).CrossRefGoogle Scholar
  8. 8.
    R. Al-Shannaq, M. Farid, S. Al-Muhtaseb, and J. Kurdi, Sol. Energy Mater Sol. Cells 132, 311 (2015).CrossRefGoogle Scholar
  9. 9.
    Q. Yu, F. Tchuenbou-Magaia, B. Al-Duri, Z. B. Zhang, Y. L. Ding, and Y. L. Li, Appl. Energy 211, 1190 (2018).CrossRefGoogle Scholar
  10. 10.
    P. F. De Castro and D. G. Shchukin, Chem.-Eur. J. 21, 11174 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. H. Ma, X. D. Chu, W. Li, and G. Y. Tang, Sol. Energy 86, 2056 (2012).CrossRefGoogle Scholar
  12. 12.
    C. Alkan and A. Sari, Sol. Energy 82, 118 (2008).CrossRefGoogle Scholar
  13. 13.
    B. X. Li, T. X. Liu, L. Y. Hu, Y. F. Wang, and L. N. Gao, ACS Sustainable Chem. Eng. 1, 374 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, X. Zheng, H. Wang, and Q. Du, J. Mater. Chem. A 2, 5304 (2014).CrossRefGoogle Scholar
  15. 15.
    D. Yin, L. Hao, M. Li, and Q. Zhang, Polym. Adv. Technol. 26, 613 (2015).CrossRefGoogle Scholar
  16. 16.
    X. Z. Qiu, Y. Tao, X. Q. Xu, X. H. He, and X. Y. Fu, J. Appl. Polym. Sci. 135, 46447 (2018).CrossRefGoogle Scholar
  17. 17.
    C. Li, H. Yu, Y. Song, H. Liang, and X. Yan, Energy 167, 1031 (2019).CrossRefGoogle Scholar
  18. 18.
    N. Sun and Z. Xiao, Energy Fuels 31, 10186 (2017).CrossRefGoogle Scholar
  19. 19.
    C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, London, 1990), Chap. 3, pp. 99–127.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Xuyang Ji
    • 1
  • Jian Chen
    • 1
  • Guangzhou Dang
    • 1
  • Yaqian Zhang
    • 1
  • Jieying Yang
    • 1
  • Wenjing Li
    • 1
  • Yingmin Zhao
    • 1
    Email author
  • Zhaoguo Jin
    • 1
    Email author
  1. 1.Aerospace Institute of Advanced Materials and Processing TechnologyBejingChina

Personalised recommendations