Advertisement

Polymer Science, Series B

, Volume 61, Issue 5, pp 629–636 | Cite as

Facile Synthesis of Aromatic Porous Organic Polymer for Highly Selective Capture of CO2 via Enhanced Local Dipole-π and Dipole-Quadrupol Interactions by Adjacent Benzene

  • Qiang HeEmail author
  • Yi Xu
  • Xiaoqiang Yang
FUNCTIONAL POLYMERS
  • 13 Downloads

Abstract

A new aromatic porous organic polymeric material named as N-PKIN has been successfully constructed. The electron-rich benzene in its microstructure can donate the electron density to the neighboring indole and carbonyl groups to further enhance the local dipole-π and dipole-quadrupole binding abilities to the CO2 molecules for effectively facilitating the adsorbent to attract CO2 selectively. As a result, this porous organic polymer showed outstanding CO2 absorption capacity and high CO2/N2, CO2/CH4 selectivity. In addition, upon exposure to humid condition, the porous organic polymer still kept high CO2 capture capacity and selectivity. Moreover, we have demonstrated that the CO2 absorption process is fully reversible.

Notes

ACKNOWLEDGMENTS

The details of synthesis and characterizations of 1,4-diindolebenzoyl, 1,3,5-tris-(4-fluorobenzoyl) benzene; the structural characterization, thermal stability, BET specific surface area plots, isosteric heat of CO2 adsorption and gas adsorption isotherms of N-PKIN; the adsorption measurements and simulation method are shown in the Electronic Supplementary Material (ESM).

FUNDING

This research was financially supported by the National Natural Science Foundation of China (nos. U1233202 and 51175434).

Supplementary material

11499_2019_10075_MOESM1_ESM.pdf (800 kb)
11499_2019_10075_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    R. S. Haszeldine, Science 325, 1647 (2009).CrossRefGoogle Scholar
  2. 2.
    W. Wang, Y. Wang, C. Li, L. Yan, M. Jiang, and Y. Ding, ACS Sustainable Chem. Eng. 5, 4523 (2017).CrossRefGoogle Scholar
  3. 3.
    C. Mora, A. Frazier, R. Longman, R. Dacks, M. Walton, E. Tong, J. Sanchez, L. Kaiser, Y. Stender, J. Anderson, C. Ambrosino, I. Fernandez-Silva, L. Giuseffi, and T. Giambelluca, Nature 502, 183 (2013).CrossRefGoogle Scholar
  4. 4.
    C. Wang, L. Yang, and G. Chang, J. Polym. Res. 24, 219 (2017).CrossRefGoogle Scholar
  5. 5.
    A. Cooper, Nature 519, 294 (2015).CrossRefGoogle Scholar
  6. 6.
    G. Rochelle, Science 325, 1652 (2009).CrossRefGoogle Scholar
  7. 7.
    Q. Wang, H. Ma, J. Chen, Z. Du, and J. Mi, Polym. Sci., Ser. B 60, 380 (2018).CrossRefGoogle Scholar
  8. 8.
    F. Akhtar, Q. Liu, N. Hedin, and L. Bergstrȍm, Energy Environ. Sci. 5, 7664 (2012).CrossRefGoogle Scholar
  9. 9.
    Q. Wang, J. Luo, Z. Zhong, and A. Borgna, Energy Environ. Sci. 4, 42 (2010).CrossRefGoogle Scholar
  10. 10.
    W. Xing, C. Liu, Z. Zhou, L. Zhang, J. Zhou, S. Zhuo, Z. Yan, H. Gao, G. Wang, and S. Z. Qiao, Energy Environ. Sci. 5, 7323 (2012).CrossRefGoogle Scholar
  11. 11.
    G. P. Hao, W. C. Li, D. Qian, G. H. Wang, W. P. Zhang, T. Zhang, A. Q. Wang, F. Schuth, H. J. Bongard, and A. H. Lu, J. Am. Chem. Soc. 133, 11378 (2011).CrossRefGoogle Scholar
  12. 12.
    W. Wang and D. Yuan, Sci. Rep. 4, 5711 (2014).CrossRefGoogle Scholar
  13. 13.
    J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi, and C. W. Jones, J. Am. Chem. Soc. 130, 2902 (2008).CrossRefGoogle Scholar
  14. 14.
    R. A. Khatri, S. S. C. Chuang, Y. Soong, and M. Gray, Energy Fuels 20, 1514 (2006).CrossRefGoogle Scholar
  15. 15.
    Y.-S. Bae and R. Q. Snurr, Angew. Chem., Int. Ed. 50, 11586 (2011).CrossRefGoogle Scholar
  16. 16.
    G. Chang, C. Wang, M. Du, S. Liu, and Li. Yang, Chem. Commun. 54, 2906 (2018).CrossRefGoogle Scholar
  17. 17.
    G. Chang, Y. Wang, C. Wang, Y. Li, Y. Xu, and Li. Yang, Chem. Commun. 54, 9785 (2018).CrossRefGoogle Scholar
  18. 18.
    Y. Xu, S. Jin, H. Xu, A. Nagai, and D. Jiang, Chem. Soc. Rev. 42, 8012 (2013).CrossRefGoogle Scholar
  19. 19.
    K. Wang, L. Yang, W. Wei, L. Zhang, and G. Chang, J. Membrane Sci. 549, 23 (2018).Google Scholar
  20. 20.
    T. Islamoglu, T. Kim, Z. Kahveci, O. M. El-Kadri, and H. M. El-Kaderi, J. Phys. Chem. C. 120, 2592 (2016).CrossRefGoogle Scholar
  21. 21.
    S. Kim and Y. M. Lee, Prog. Polym. Sci. 43, 1 (2015).CrossRefGoogle Scholar
  22. 22.
    Z. Xiang, R. Mercado, J. M. Huck, H. Wang, Z. Guo, W. Wang, D. Cao, M. Haranczyk, and B. Smit, J. Am. Chem. Soc. 137, 13301 (2015).CrossRefGoogle Scholar
  23. 23.
    H. M. Lee, I. S. Youn, M. Saleh, J. W. Lee, and K. S. Kim, Phys. Chem. Chem. Phys. 17, 10925 (2015).CrossRefGoogle Scholar
  24. 24.
    G. Chang, Z. Shang, T. Yu, and L. Yang, J. Mater. Chem. A. 4, 2517 (2016).CrossRefGoogle Scholar
  25. 25.
    G. Chang, L. Yang, J. Yang, Y. Huang, K. Cao, J. Ma, and D. Wang, Polym. Chem. 7, 5768 (2016).CrossRefGoogle Scholar
  26. 26.
    L. Yang, G. Chang, and D. Wang, ACS Appl. Mater. Interfaces. 9, 15213 (2017).CrossRefGoogle Scholar
  27. 27.
    A. Vishnyakov, P. I. Ravikovitch, and A. V. Neimark, Langmuir 15, 8736 (1999).CrossRefGoogle Scholar
  28. 28.
    Y. S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, J. T. Hupp, and R. Q. Snurr, Chem. Commun. 44, 4135 (2008).CrossRefGoogle Scholar
  29. 29.
    J. Liu, P. K. Thallapally, B. P. McGrail, and D. R. Brown, J. Chem. Soc. Rev. 41, 2308 (2012).CrossRefGoogle Scholar
  30. 30.
    B. S. Ghanem, M. Hashem, D. M. Harris, K. J. Msayib, M. Xu, P. M. Budd, N. Chaukura, D. Book, S. Tedds, A. Walton, and N. B. McKeown, Macromolecules 43, 5287 (2010).CrossRefGoogle Scholar
  31. 31.
    X. S. Ding, H. Li, Y. C. Zhao, and B. H. Han, Polym. Chem. 6, 5305 (2015).CrossRefGoogle Scholar
  32. 32.
    C. Zhang, P. C. Zhu, L. X. Tan, L. N. Luo, Y. Liu, J. M. Liu, S. Y. Ding, B. X. Tan, L. Yang, and H. B. Xu, Polymer 82, 100 (2016).CrossRefGoogle Scholar
  33. 33.
    X. Zhu, C. Do-Thanh, C. R. Murdock, K. M. Nelson, C. Tian, S. Brown, S. M. Mahurin, D. M. Jenkins, J. Hu, B. Zhao, H. Liu, and S. Dai, ACS Macro Lett. 2, 660 (2013).CrossRefGoogle Scholar
  34. 34.
    W. Lu, J. P. Sculley, D. Yuan, R. Krishna, Z. Wei, and H. Zhou, Angew. Chem., Int. Ed. 51, 7480 (2012).CrossRefGoogle Scholar
  35. 35.
    J. Lu and J. Zhang, J. Mater. Chem. A. 2, 13831 (2014).CrossRefGoogle Scholar
  36. 36.
    R. Dawson, D. J. Adams, and A. I. Cooper, Chem. Sci. 2, 1173 (2011).CrossRefGoogle Scholar
  37. 37.
    W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, and H. C. Zhou, J. Am. Chem. Soc. 133, 18126 (2011).Google Scholar
  38. 38.
    A. C. Kizzie, A. G. Wong-Foy, and A. J. Matzger, Langmuir 27, 6368 (2011).CrossRefGoogle Scholar
  39. 39.
    J. Liu, J. Tian, P. K. Thallapally, and B. P. McGrail, J. Phys. Chem. C 116, 9575 (2012).CrossRefGoogle Scholar
  40. 40.
    C. Balzer, R. T. Cimino, G. Y. Gor, A. V. Neimark, and G. Reichenauer, Langmuir 32, 8265 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Aviation Engineering Institute, Civil Aviation Flight University of ChinaGuanghanChina

Personalised recommendations