Advertisement

Polymer Science, Series B

, Volume 61, Issue 5, pp 663–669 | Cite as

Polyaniline-Ag Nanocomposite Containing Silane Ligand: Synthesis, Characterization and Electroactivity Behavior

  • Soghra FathalipourEmail author
  • Said Ahunbar
COMPOSITES
  • 7 Downloads

Abstract

In this work, polyaniline-Ag nanocomposite containing modified silane ligand was synthesized via the reduction of AgNO3 with hydrazine on the surface of the emeraldine-base polyaniline containing modified silane ligand. The latter was prepared through chemical polymerization of aniline in the presence of thiol-terminated silane ligand by ammonium peroxydisulfate as an oxidant reagent under ultrasonic waves. Then it was used as a template in the synthesis of Ag NPs. Resultant nanocomposite displayed high dispersity in polar organic solvents and aquous media. Nanocomposite was characterized by UV–Vis and FTIR spectroscopy, X-ray diffraction studies, scanning electron microscopy, energy dispersive analysis of W-ray and transmission electron microscopy. The results confirmed the presence of Ag NPs in nanocomposite and also the successful convertion of emeraldine-salt to emeraldine-base polyaniline. Finally, the electroactivity behavior of initial polymer and resultant nanocomposite was investigated by cyclic voltammetry method.

REFERENCES

  1. 1.
    B. Massoumi, S. Fathalipour, A. Massoudi, M. Hassanzadeh, and A. A. Entezami, J. Appl. Polym. Sci. 130, 2780 (2013).CrossRefGoogle Scholar
  2. 2.
    M. R. Karim, K. T. Lim, C. J. Lee, M. T. I. Bhuiyan, H. J. Kim, L. S. Park, and M. S. Lee, J. Polym. Sci., Part A: Polym. Chem. 45, 5741 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Wang and D. Zhang, Adv. Polym. Technol. 32, E323 (2013).CrossRefGoogle Scholar
  4. 4.
    G. M. do Nascimento, P. Y. Kobata, R. P. Millen, and M. L. Temperini, Synth. Met. 157, 247 (2007).CrossRefGoogle Scholar
  5. 5.
    E. Sanches, J. Soares, R. Iost, V. Marangoni, G. Trovati, T. Batista, A. Mafud, V. Zucolotto, and Y. P. Mascarenhas, J. Nanomater. 2011, 73 (2011).CrossRefGoogle Scholar
  6. 6.
    B. Massoumi and S. Fathalipour, Polym. Sci., Ser. A 56, 373 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Fathalipour and B. Massoumi, J. Appl. Polym. Sci. 132, 42366 (2015).CrossRefGoogle Scholar
  8. 8.
    O. M. Folarin, E. R. Sadiku, and A.Maity, J. Phys. Sci. 6, 4869 (2011).Google Scholar
  9. 9.
    B. Rozenberg and R. Tenne, Prog. Polym. Sci. 33, 40 (2008).CrossRefGoogle Scholar
  10. 10.
    P. Khanna, N. Singh, S. Charan, and A. K. Viswanath, Mater. Chem. Phys. 92, 214 (2005).CrossRefGoogle Scholar
  11. 11.
    H.-L. Wang, W. Li, Q. Jia, and E. Akhadov, Chem. Mater. 19, 520 (2007).CrossRefGoogle Scholar
  12. 12.
    I. Y. Sapurina and J. Stejskal, Russ. J. Gen. Chem. 82, 256 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Ghorbani, M. S. Lashkenari, and H. Eisazadeh, High Perform. Polym. 23, 513 (2011).CrossRefGoogle Scholar
  14. 14.
    S. Fathalipour and M. Mardi, Mater. Sci. Eng., C 79, 55 (2017).CrossRefGoogle Scholar
  15. 15.
    H. D. Tran, J. M. D’Arcy, Y. Wang, P. J. Beltramo, V. A. Strong, and R. B. Kaner, J. Mater. Chem. 21, 3534 (2011).CrossRefGoogle Scholar
  16. 16.
    O. Y. Posudievsky, O. Goncharuk, R. Barille, and V. Pokhodenko, Synth. Met. 160, 462 (2010).CrossRefGoogle Scholar
  17. 17.
    M. M. Ayad, N. Prastomo, A. Matsuda, and J. Stejskal, Synth. Met. 160, 42 (2010).CrossRefGoogle Scholar
  18. 18.
    E. N. Konyushenko, S. Reynaud, V. Pellerin, M. Trchová, J. Stejskal, and I. Sapurina, Polymer 52, 1900 (2011).CrossRefGoogle Scholar
  19. 19.
    P. Buffat, Mater. Chem. Phys. 81, 368 (2003).CrossRefGoogle Scholar
  20. 20.
    A. B. Afzal, M. Akhtar, M. Nadeem, M. Ahmad, M. Hassan, T. Yasin, and M. Mehmood, J. Phys. D: Appl. Phys. 42, 015411 (2008).CrossRefGoogle Scholar
  21. 21.
    S. Bouazza, V. Alonzo, and D. Hauchard, Synth. Met. 159, 1612 (2009).CrossRefGoogle Scholar
  22. 22.
    S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, and M. F. Bertino, Chem. Mater. 17, 5941 (2005).CrossRefGoogle Scholar
  23. 23.
    Z. Mbhele, M. Salemane, C. Van Sittert, J. Nedeljković, V. Djoković, and A. Luyt, Chem. Mater. 15, 5019 (2003).CrossRefGoogle Scholar
  24. 24.
    E. Genies, M. Lapkowski, and J. Penneau, J. Electroanalyt. Chem. Interfacial Electrochem. 249, 97 (1988).CrossRefGoogle Scholar
  25. 25.
    Y. Gao, D. Shan, F. Cao, J. Gong, X. Li, H.-Y. Ma, Z.‑M. Su, and L.-Y. Qu, J. Phys. Chem. C 113, 15175 (2009).CrossRefGoogle Scholar
  26. 26.
    M. M. Oliveira, E. G. Castro, C. D. Canestraro, D. Zanchet, D. Ugarte, L. S. Roman, and A. J. Zarbin, J. Phys. Chem. B 110, 17063 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Payame Noor UniversityTehranIran

Personalised recommendations