Advertisement

Preparation of Carboxylated Graphene Oxide/Polydimethacrylate Nanocomposites via Atom Transfer Radical Polymerization and the Mechanical Properties of Nanocomposites

  • Maryam Saleh Mohammadnia
  • Salar HemmatiEmail author
  • Nahid Ghasemi
  • Mahmoud Bahari
COMPOSITES
  • 5 Downloads

Abstract

An efficient strategy for grafting and growing of Bisphenol A glycerolate dimethacrylate directly from the surface of carboxylated graphene oxide sheets is presented in this paper. The carboxylated graphene oxide-polydimethacrylate was synthesized by atom transfer radical polymerization (ATRP), to develop new biomaterials for orthopedic and dental applications with the desired mechanical properties. The initiator was covalently bonded to the carboxylated graphene oxide nanosheets and the succeeding ATRP resulted in the grafting of the polymer chains (85 wt % grafting) to the graphene surface. The prepared nanohybrid was used as filler in the formulations containing Bisphenol A glycerolate dimethacrylate for evaluation of mechanical properties. Synthesized nanohybrid and nanocomposite materials were characterized by FTIR, XRD, TGA, AFM, FE-SEM and TEM. Compressive tests revealed that the compressive strength and toughness of synthesized nanocomposites compared with the sample without filler were greatly improved by 74 and 55% respectively, and it showed a significant improvement in the mechanical properties compared to common inorganic fillers.

Notes

ACKNOWLEDGMENTS

We wish to express our gratitude to the Iran Nanotechnology Initiative Council (INIC) for partial financial support.

REFERENCES

  1. 1.
    M. S. Soh, A. Sellinger, and A. U. J. Yap, Curr. Nanosci. 2, 373 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Fathi and V. Mortazavi, J. Res. Med. Sci. 1, 42 (2004).Google Scholar
  3. 3.
    G. Bjørklund, M. Dadar, J. Mutter, and J. Aaseth, Environ. Res. 159,545 (2017).CrossRefGoogle Scholar
  4. 4.
    H. W. Roberts, D. Leonard, and J. Osborne, J. Am. Dent. Assoc., JADA 132, 58 (2001).Google Scholar
  5. 5.
    M. Y. Jeon, S. H. Yoo, J. H. Kim, C. K. Kim, and B. H. Cho, Biomacromolecules 8,2571 (2007).CrossRefGoogle Scholar
  6. 6.
    H. Alsunbul, N. Silikas, and D. C.Watts, Dent. Mater.32,998 (2016).CrossRefGoogle Scholar
  7. 7.
    L. Chen, C. Xu, Y. Wang, S. Jian, Q. Yu, and L. Hao, Biomed. Mater. 7, 045014 (2012).CrossRefGoogle Scholar
  8. 8.
    D. Nuvoli, V. Alzari, R. Sanna, S. Scognamillo, J. Alongi, G. Malucelli, and A. Mariani, J. Nanopart. Res. 15, 1512 (2013).CrossRefGoogle Scholar
  9. 9.
    J. F. Roulet, J. Dent. 25,459 (1997).CrossRefGoogle Scholar
  10. 10.
    J. L. Ferracane, Dent. Mater. 27, 29 (2011).CrossRefGoogle Scholar
  11. 11.
    R. L. Sakaguchi, Dent. Mater. 21, 3(2005).CrossRefGoogle Scholar
  12. 12.
    Q. Liu, J. Ding, D. E. Chambers, S. Debnath, S. L. Wunder, and G. R. Baran, J. Biomed. Mater. Res. 57, 384 (2001).CrossRefGoogle Scholar
  13. 13.
    Z. Khurshid, M. Zafar, S. Qasim, S. Shahab, M. Naseem, and A. AbuReqaiba, Materials 8, 717 (2015).CrossRefGoogle Scholar
  14. 14.
    G. C. Padovani, V. P. Feitosa, S. Sauro, F.R. Tay, G. Durán, A. J. Paula, and N. Durán, Trends Biotechnol. 11, 621 (2015)CrossRefGoogle Scholar
  15. 15.
    E.G. Habib, R. Wang, Y. Wang, M. Zhu, and X. X. Zhu, ACS Biomater. Sci. Eng. 2, 1(2016).CrossRefGoogle Scholar
  16. 16.
    S. Thorat, A. Diaspro, and M. Salerno, Adv. Mater. Lett. 4,15 (2013).CrossRefGoogle Scholar
  17. 17.
    S. H. Yoo, K. Park, J. Kim, and C. K. Kim, Macromol. Res. 19, 27 (2011).CrossRefGoogle Scholar
  18. 18.
    A. Ambrosi, A. Bonanni, Z. Sofer, J. S. Cross, and M. Pumera, Chem. - Eur. J. 17, 10763 (2011).CrossRefGoogle Scholar
  19. 19.
    B. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater. 22, 3906 (2010).CrossRefGoogle Scholar
  20. 20.
    L. Gao, J. R. Guest, and N. P. Guisinger, Nano Lett. 10, 3512 (2010).CrossRefGoogle Scholar
  21. 21.
    T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’homme, and L. C. Brinson, Nat. Nanotechnol. 3, 327 (2008).CrossRefGoogle Scholar
  22. 22.
    W. H. Qiang, L. C. Yang, L. H. Ming, and Q. He, Chin. Phys. B 22,098106 (2013).CrossRefGoogle Scholar
  23. 23.
    L. Chen, Y. Liu, Y. Zhao, N. Chen and L. Qu, Nanotechnology 27, 032001 (2016).CrossRefGoogle Scholar
  24. 24.
    M. Pumera, Energy Environ. Sci. 4, 668 (2011).CrossRefGoogle Scholar
  25. 25.
    K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’-homme, I. A. Aksay, and R. Car, Nano Lett. 8, 36 (2007).CrossRefGoogle Scholar
  26. 26.
    T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dekany, Chem Mater. 18, 2740 (2006).CrossRefGoogle Scholar
  27. 27.
    H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules 43, 651(2010).Google Scholar
  28. 28.
    D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2009).CrossRefGoogle Scholar
  29. 29.
    N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W.‑W. Liu, and C. H. Voon, Procedia Eng. 184, 469 (2017).CrossRefGoogle Scholar
  30. 30.
    M. Osada and T. Sasaki, J. Mater. Chem. 19, 2503(2008).CrossRefGoogle Scholar
  31. 31.
    R. K. Layek and A. K. Nandi, Polymer 54, 5087 (2013).CrossRefGoogle Scholar
  32. 32.
    D. Yinlong, D. Ningning, Z. Menghan, Z. Kai, N. Ruiqi, Z. Shuling, S. Ningwei, W. Guibin, and W. Jun, Phys. Chem. Chem. Phys. 19, 2252 (2017).CrossRefGoogle Scholar
  33. 33.
    G. Vasilios, N. T. Jitendra, K. K. Christian, A. P. Jason, B. B. Athanasios, S. K. Kwang, and Z. Radek, Chem. Rev.116, 5464 (2016).CrossRefGoogle Scholar
  34. 34.
    J. Zhao, Z. Wang, J. C. White, and B. Xing, Environ. Sci. Technol. 48, 9995(2014).CrossRefGoogle Scholar
  35. 35.
    D. Galpaya, M. Wang, M. Liu, N. Motta, E.Waclawik, and C. Yan, Graphene 30, 49 (2012).Google Scholar
  36. 36.
    V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, Chem. Rev. 112,6156 (2012).CrossRefGoogle Scholar
  37. 37.
    N. Song, J. Yang, P. Ding, S. Tang, Y. Liu, and L. Shi, Ind. Eng. Chem. Res. 53, 19951(2014).CrossRefGoogle Scholar
  38. 38.
    J. Greenwood, T. H. Phan, Y. Fujita, Z. Li, O. Ivasenko, W. Vanderlinden, H. Gorp, W. Frederickx, G. Lu, K.Tahara, Y. Tobe, H. Uji-i, S. F. Mertens, and S. D. Feyter, ACS Nano 9, 5520 (2015).CrossRefGoogle Scholar
  39. 39.
    B. Zdyrko and I. Luzinov, Macromol. Rapid Commun. 32, 859 (2011).CrossRefGoogle Scholar
  40. 40.
    H. Roghani-Mamaqani, V. Haddadi-Asl, K. Khezri, E. Zeinali, and M. Salami-Kalajahi, J. Polym. Res. 21, 333 (2013).CrossRefGoogle Scholar
  41. 41.
    H. Roghani-Mamaqani, V. Haddadi-Asl, M. Ghaderi-Ghahfarrokhi, and Z. Sobhkhiz, Colloid Polym. Sci. 292, 2971 (2014).CrossRefGoogle Scholar
  42. 42.
    K. Matyjaszewski, Macromolecules 45, 4015 (2012).CrossRefGoogle Scholar
  43. 43.
    Polymers: Chemistry and Physics of Modern Materials, Ed. by J. M. G. Cowie and A. Valeria (CRC Press, Boca Raton, 2007).Google Scholar
  44. 44.
    V. M. C. Coessens and K. Matyjaszewski, J. Chem. Educ. 87, 916 (2010).CrossRefGoogle Scholar
  45. 45.
    S. H. Lee, D. R. Dreyer, J. An, A. Velamakanni, D. Piner, S. Park, Y. Zhu, S. O. Kim, C. W. Bielawski, and R. S. Ruoff, Macromol. Rapid Commun. 31, 281 (2010).CrossRefGoogle Scholar
  46. 46.
    R. Wang1, M. Zhu1, S. Bao, F. Liu1, X. Jiang, and M. Zhu, Mater. Sci. Res. 2, 4 (2013).Google Scholar
  47. 47.
    X. Zhang, J. Yin, C. Peng, W. Hu, Z. Zhu, W. Li, C. Fan, and Q. Huang, Carbon 49, 986 (2011).CrossRefGoogle Scholar
  48. 48.
    W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  49. 49.
    H. Jeong, Y. P. Lee, R. J. W. E. Lahaye, M. Park, K. H. An, I.J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, and Y. H. Lee, J. Am. Chem. Soc. 130, 1362 (2008).CrossRefGoogle Scholar
  50. 50.
    A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány, Langmuir 19, 6050 (2003).CrossRefGoogle Scholar
  51. 51.
    X. Zhao and P. Liu, RSC Adv. 4, 24232 (2014).Google Scholar
  52. 52.
    H. He and C. Gao, Chem. Mater. 22, 5054 (2010).CrossRefGoogle Scholar
  53. 53.
    L. Gan, S. Shang, C. W. M. Yuen, and S. X. Jiang, RSC Adv. 5, 15954 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Maryam Saleh Mohammadnia
    • 1
  • Salar Hemmati
    • 2
    Email author
  • Nahid Ghasemi
    • 1
  • Mahmoud Bahari
    • 3
  1. 1.Department of Chemistry, Sciences Faculty, Arak Branch, Islamic Azad UniversityArakIran
  2. 2.Drug Applied Research Center, Tabriz University of Medical SciencesTabrizIran
  3. 3.Dental and Periodontal Research Center and Department of Operative Dentistry, Tabriz University of Medical SciencesTabrizIran

Personalised recommendations