Advertisement

A Novel pH, Thermo, and Magnetic Responsive Hydrogel Nanocomposite Containing Nanogel for Anticancer Drug Delivery

  • Somayeh Ghavami
  • Ghasem Rezanejade BardajeeEmail author
  • Ahmad Mirshokraie
  • Khadijeh Didehban
COMPOSITES
  • 11 Downloads

Abstract

Hydrogels, nanogels, and nanocomposites have attracted much attention as drug delivery systems during the past decades. In this work, a novel drug delivery system was synthesized by incorporation of nanogel into multi responsive hydrogel nanocomposite. At first, nanogel was prepared by copolymerization of N‑isopropylacrylamide (NIPAM) and (2-dimethylamino)ethyl methacrylate (DMA). Then it was embedded it into pH, thermo, and magnetic responsive hydrogel nanocomposite including graft copolymerization of poly(2-dimethylamino)ethyl methacrylate (PDMA) onto salep (PDMA-g-salep) and Fe3O4 nanoparticles (NPs). The synthesized samples were characterized by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and atomic force micrographs (AFM). The sensitivity of the synthesized sample to temperature, pH, and magnetic field was studied using the swelling experiments. The drug release ability of the sample was also investigated at different pH, temperatures, and magnetic field. Finally, different kinetic models were used to discuss about the mechanism of drug release from the prepared sample. Our results represented the high efficiency of this kind of hydrogel nanocomposite for applications in cancer therapy.

Notes

ACKNOWLEDGMENTS

The authors wish to thank Payame Noor University for their financial support of this study.

REFERENCES

  1. 1.
    I. Prieto, S. Montemuiño, J. Luna, M. V. Torres, and E. Amaya, Clin. Nutr. 36, 1457 (2017).CrossRefGoogle Scholar
  2. 2.
    W. Tsai, H. Tsai, Y. Wong, J. Hong, S. Chang, and M. Lee,‎ Mater. Sci. Eng., C 82, 317 (2018).CrossRefGoogle Scholar
  3. 3.
    M. J. Duffy, N. C. Synnott, and J. Crown, Eur. J. Cancer 83, 258 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Shahrokni, A. J. Wu, J. Carter, and S. M. Lichtman, Clin. Geriatr. Med. 32, 63 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Zugazagoitia, C. Guedes, S. Ponce, S. Molina-Pinelo, and L. Paz-Ares, Clin. Ther. 38, 1551 (2016).CrossRefGoogle Scholar
  6. 6.
    K. P. Medina-Alarcón, A. R. Voltan, B. Fonseca-Santos, I. Jacob Moro, and A. M. Fusco-Almeida, ‎Mater. Sci. Eng., C 80, 748 (2017).CrossRefGoogle Scholar
  7. 7.
    N. Sabbagh, A. Akbari, N. Arsalani, B. Eftekhari-Sis, and H. Hamishekar, Appl. Clay Sci. 148, 48 (2017).CrossRefGoogle Scholar
  8. 8.
    G. Cavallaro, G. Lazzara, M. Massaro, S. Milioto, R. Noto, F. Parisi, and S. Riela, J. Phys. Chem. C 119, 8944 (2015).CrossRefGoogle Scholar
  9. 9.
    N. A. Peppas and D. S. V. Blarcom, J. Controlled Release 240, 142 (2016).CrossRefGoogle Scholar
  10. 10.
    E. Mauri, F. Rossi, and A. Sacchetti, ‎Mater. Sci. Eng., C 61, 851 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Saboktakin and R. M. Tabatabaei, Int. J. Biol. Macromol. 75, 426 (2015).CrossRefGoogle Scholar
  12. 12.
    W. Wei, J. Li, X. Qi, Y. Zhong, G. Zuo, X. Pan, T. Su, J. Zhang, and W. Dong, Carbohydr. Polym. 177, 275 (2017).CrossRefGoogle Scholar
  13. 13.
    G. R. Bardajee and Z. Hooshyar, J. Polym. Res. 20, 67 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Xu, M. Tam, S. Samaei, S. Lerouge, J. Barralet, M. M. Stevenson, and M. Cerruti, Acta Biomater. 48, 247 (2017).CrossRefGoogle Scholar
  15. 15.
    G. R. Bardajee, Z. Hooshyar, F. Zehtabi, and A. Pourjavadi, Iran. Polym. J. 21, 829 (2012).CrossRefGoogle Scholar
  16. 16.
    Y. Ren, X. Zhao, X. Liang, P. X. Ma, and B. Guo, Int. J. Biol. Macromol. 105, 1079 (2017).CrossRefGoogle Scholar
  17. 17.
    C. Gao, J. Ren, C. Zhao, W. Kong, Q. Dai, Q. Chen, C. Liu, and R. Sun, Carbohydr. Polym. 151, 189 (2016).CrossRefGoogle Scholar
  18. 18.
    J. Hu, Y. Chen, Y. Li, Z. Zhou, and Y. Cheng, Biomaterials 112, 133 (2017).CrossRefGoogle Scholar
  19. 19.
    Z. Zhao, H. Xie, Y. Li, and Y. Jiang, J. Drug Delivery Sci. Technol. 35, 184 (2016).CrossRefGoogle Scholar
  20. 20.
    M. S. Gil, T. Thambi, V. H. G. Phan, S. H. Kim, and D. S. Lee, J. Mater. Chem. B 5, 7140 (2017).CrossRefGoogle Scholar
  21. 21.
    M. Molinos, V. Carvalho, D. M. Silva, and F. M. Gama, Biomacromolecules 13, 517 (2012).CrossRefGoogle Scholar
  22. 22.
    S. Lehmann, S. Seiffert, and W. Richtering, J. Am. Chem. Soc. 134, 15963 (2012).CrossRefGoogle Scholar
  23. 23.
    S. Sood, V. K. Gupta, S. Agarwal, K. Dev, and D. Pathania, Int. J. Biol. Macromol. 101, 612 (2017).CrossRefGoogle Scholar
  24. 24.
    H. S. Samanta and S. K. Ray, Carbohydr. Polym. 106, 109 (2014).CrossRefGoogle Scholar
  25. 25.
    R. Barbucci, G. Giani, S. Fedi, S. Bottari, and M. Casolaro, Acta Biomater. 8, 4244 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Czaun, L. Hevesi, M. Takafujia, and H. Ihara, Chem. Commun. 2008, 2124 (2008).CrossRefGoogle Scholar
  27. 27.
    N. Movagharnezhad and P. N. Moghadam, Polym. Bull. 74, 4645 (2017).CrossRefGoogle Scholar
  28. 28.
    L. Zhou, B. He, and F. Zhang, ACS Appl. Mater. Interfaces 4, 192 (2012).CrossRefGoogle Scholar
  29. 29.
    G. R. Bardajee, Z. Hooshyar, and F. Rastgo, Colloid Polym. Sci. 291, 2791 (2013).CrossRefGoogle Scholar
  30. 30.
    G. R. Bardajee, Z. Hooshyar, M. J. Asli, F. E. Shahidi, and N. Dianatnejad, ‎Mater. Sci. Eng., C 36, 277(2014).CrossRefGoogle Scholar
  31. 31.
    G. R. Bardajee and Z. Hooshyar, J. Polym. Res. 20, 298 (2013).CrossRefGoogle Scholar
  32. 32.
    K. Huang and S. H. Ehrman, Langmuir 23, 1419 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Somayeh Ghavami
    • 1
  • Ghasem Rezanejade Bardajee
    • 1
    Email author
  • Ahmad Mirshokraie
    • 1
  • Khadijeh Didehban
    • 1
  1. 1.Department of Chemistry, Payame Noor UniversityTehranIran

Personalised recommendations