Cure-Reaction Kinetics of Crosslinked Polythiourethane Network for Optical Applications Using FTIR Spectroscopy

  • W. P. DuEmail author
  • Y. Zhang
  • L. J. Tan
  • H. F. Chen


An optical polythiourethane thermosetting system based on a 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol and a m-xylylenediisocyanate has been studied. The solid-state isothermal cure reaction was followed by FTIR spectroscopy in the temperature range of 80–120°C. Kinetic and thermodynamic parameters were calculated using normalized conversion curves.



This work was supported by the National Key Research and Development Program of China (2016YFB0302300) and the Taizhou Science and Technology Project (1017GY15).


  1. 1.
    H. G. Ang and S. Pisharath, Energetic polymers, Binders and Plasticizers for Enhancing Performance (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2012).Google Scholar
  2. 2.
    G. Avar, U. Meier-Westhues, H. Casselmann, and D. Achten, “Polyurethanes” in Polymer Science: A Comprehensive Reference, Ed. by K. Matyjaszewski and M. Möller (Elsevier Science, Amsterdam, 2012), p. 411.Google Scholar
  3. 3.
    D. K. Chattopadhyay and K. V. S. N. Raju, Prog. Polym. Sci. 32, 352(2007).CrossRefGoogle Scholar
  4. 4.
    P. Król, Prog. Mater. Sci. 52, 915 (2007).CrossRefGoogle Scholar
  5. 5.
    L. M. Liu, Z. N. Qi, and X. G. Zhu, J. Appl. Polym. Sci. 71, 1133 (1999).CrossRefGoogle Scholar
  6. 6.
    A. K. Mishra, D. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, Prog.Org. Coat. 55, 231 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Modesti, A. Lorenzetti, F. Simioni, and G. Camino, Polym. Degrad. Stab. 77, 195 (2002).CrossRefGoogle Scholar
  8. 8.
    R. C. R. Nunes, J. L. C. Fonseca, and M. R. Pereira, Polym. Test. 19, 93 (2000).CrossRefGoogle Scholar
  9. 9.
    K. D. Weiss, Prog. Polym. Sci. 22, 203 (1997).CrossRefGoogle Scholar
  10. 10.
    Z. Zhu, B. G. Risch, Z. Yang, and Y. N. Lin, Patent No. EP0780413A1 (1997).Google Scholar
  11. 11.
    Y. Zhou, Y. N. Lin, Z. Zhu, and B. G. Risch, US Patent No. 6008296 (1999).Google Scholar
  12. 12.
    A. Nagai, T. Miyagawa, H. Kudo, and T. Endo, Macromolecules 36, 9335 (2003).CrossRefGoogle Scholar
  13. 13.
    A. Nagai, B. Ochiai, and T. Endo, Macromolecules 37, 7538(2004).CrossRefGoogle Scholar
  14. 14.
    D. Nagai, M. Sato, B. Ochiai, and T. Endo, Macromolecules 37, 3523 (2004).CrossRefGoogle Scholar
  15. 15.
    Y. Huang and D. R. Paul, Macromolecules 39, 1554 (2006).CrossRefGoogle Scholar
  16. 16.
    E. Marianucci, C. Berti, F. Pilati, P. Manaresi, M. Guaita, and O. Chiantore, Polymer 35, 1564(1994).CrossRefGoogle Scholar
  17. 17.
    T. Nagata, K. Okazaki, and T. Miura, Patent No. EP351073 B1 (1990).Google Scholar
  18. 18.
    L. Yean and C. Bochu, Patent No. EP 408459 A1 (1990).Google Scholar
  19. 19.
    P. K. Maji and A. K. Bhowmick, J. Polym. Sci., Part A: Polym. Chem. 47, 731 (2009).CrossRefGoogle Scholar
  20. 20.
    S. Keskin and S. O. Zkar, J. Appl. Polym. Sci. 81, 918 (2001).CrossRefGoogle Scholar
  21. 21.
    D. Kincal and S. O. Zkar, J. Appl. Polym.Sci. 66, 1979 (1997).CrossRefGoogle Scholar
  22. 22.
    J. L. Hopewell, G. A. George, and D. J. T. Hill, Polymer 41, 8231 (2000).CrossRefGoogle Scholar
  23. 23.
    A. Omrani, M. Ghaemy, and A. A. Rostami, Macromol. Mater. Eng. 291, 181 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Wu and M. D. Souced, Polymer 39, 5747 (1998).CrossRefGoogle Scholar
  25. 25.
    K. Hailu, G. Guthausen, W. Becker, A. König, A. Bendfeld, and E. Geissler, Polymer Testing 29, 513 (2010).CrossRefGoogle Scholar
  26. 26.
    J. L. Han, C. H. Yu, Y. H. Lin, and K. H. Hsieh, J. Appl. Polym. Sci. 107, 3891 (2008).CrossRefGoogle Scholar
  27. 27.
    F. Burel, A. Feldman, and C. Bunel, Polymer 46, 15 (2005).CrossRefGoogle Scholar
  28. 28.
    N. B. H. Mohamed, M. Haouari, N. Jaballah, A. Bche-tnia, K. Hriz, M. Majdoub, and H. B. Ouad, Phys. B (Amsterdam, Neth.) 407, 3849 (2012).Google Scholar
  29. 29.
    S. Boufi, M. N. Belgacem, J. Quillerous, and A. Gandini, Macromolecules 26, 6706 (1993).CrossRefGoogle Scholar
  30. 30.
    L. H. Fan, C. P. Hu, Z. P. Zhang, and S. K. Ying, J. Appl. Polym. Sci. 59, 1417 (1996).CrossRefGoogle Scholar
  31. 31.
    I. Yilgor, E. Yilgor, I. G. Guler, T. C. Ward, and G. L. Wilkes, Polymer 47, 4105 (2006).CrossRefGoogle Scholar
  32. 32.
    J. W. Chen and L. W. Chen, J. Polym. Sci., Part A: Polym. Chem. 37, 1797 (1999).CrossRefGoogle Scholar
  33. 33.
    S. Li, R. Vatanparast, and H. Lemmetyinen, Polymer 41, 5571 (2000).CrossRefGoogle Scholar
  34. 34.
    I. Brnardić, J. Macan, H. Ivanković, and M. Ivanković, J. Appl. Polym. Sci. 107, 1932 (2008).CrossRefGoogle Scholar
  35. 35.
    H. Jian, L. Xufeng, and S. Guorong, Chem. React. Eng. Technol. 10, 423 (2008).Google Scholar
  36. 36.
    S. Li, R. Vatanparast, and H. Lemmetyinen, Polymer 41, 5571 (2000).CrossRefGoogle Scholar
  37. 37.
    H. Kothandaraman and A. Sultan Nasar, J. Appl. Polym. Sci. 50, 1611 (1993).CrossRefGoogle Scholar
  38. 38.
    F. Schapman, J. P. Couvercelle, and C. Bunel, Polymer 39, 965 (1998).CrossRefGoogle Scholar
  39. 39.
    R. Lomölder, F. Plogmann, and P. Speier, J. Coat. Technol. 69 (868), 51 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua UniversityShanghaiChina
  2. 2.Research Institute of Zhejiang University-TaizhouTaizhouChina

Personalised recommendations