Advertisement

Polymer Science, Series B

, Volume 60, Issue 6, pp 806–815 | Cite as

Hyperthermic Agent Prepared by One-Pot Modification of Maghemite Using an Aliphatic Polyester Model

  • Tayana Cristina de Araújo Segura
  • Emiliane Daher Pereira
  • Luis Peña Icart
  • Edson Fernandes
  • Geiza Esperandio de Oliveira
  • Fernando Gomes de SouzaJr.Email author
Medical Polymers

Abstract

This paper presents the preparation of a hyperthermic agent by the direct modification of magnetic nanoparticles via grafting of an aliphatic polyester model, the low molecular weight poly(lactic acid), PLA. This grafting was carried out in dispersion, where particles modified with lactic acid were grafted to the PLA using an aromatic diisocyanate. The prepared materials were studied by several techniques, such as Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), thermogravimetric analysis (TGA) and magnetic force. The results showed that the synthesis and modification of nanoparticles were performed successfully and that the obtained products presented magnetic force values able to make them useful in biomedical applications, such as magnetic hyperthermia. In this sense, the prepared materials heated using 200 A and 300 A presented Specific Absorption Rate equal to 1254 and 3762 W/kg, respectively. In other words, 20 mg/mL dispersions of these nanomaterials, heated using 200 and 300 A, can increase the temperature up to 39 and 69°C, respectively. Thus, tested media achieved temperatures which can induce tumor cell death, constituting an attractive alternative in the fight against cancer. Therefore, besides the low cost and ease of production, the materials produced here present encouraging results, which may allow their future use in cancer therapy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Antoni, J. Ferlay, I. Soerjomataram, A. Znaor, A. Jemal, and F. Bray, Eur. Urol. 71, 96 (2017).CrossRefGoogle Scholar
  2. 2.
    C. Fitzmaurice, C. Allen, R. M. Barber, L. Barregard, Z. A. Bhutta, H. Brenner, D. J. Dicker, O. Chimed-Orchir, R. Dandona, and L. Dandona, JAMA Oncol. 3, 524 (2017).CrossRefGoogle Scholar
  3. 3.
    O. Ginsburg, F. Bray, M. P. Coleman, V. Vanderpuye, A. Eniu, S. R. Kotha, M. Sarker, T. T. Huong, C. Allemani, and A. Dvaladze, The Lancet 389, 847 (2017).CrossRefGoogle Scholar
  4. 4.
    L. Schwingshackl, H. Boeing, M. Stelmach-Mardas, M. Gottschald, S. Dietrich, G. Hoffmann, and A. Chaimani, Adv. Nutr. 8, 27 (2017).CrossRefGoogle Scholar
  5. 5.
    X. Sun, X. Liu, C. Li, Y. Wang, L. Liu, F. Su, and S. Li, J. Appl. Polym. Sci. 135, 45732 (2018).CrossRefGoogle Scholar
  6. 6.
    J. Lorente, C. Velandia, J. A. Leal, Y. Garcia-Mayea, A. Lyakhovich, H. Kondoh, and M. E. Leonart, Biol. Rev. 93, 152 (2017).CrossRefGoogle Scholar
  7. 7.
    L. Miao, S. Guo, C. M. Lin, Q. Liu, and L. Huang, Adv. Drug Delivery Rev. 115, 3 (2017).CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, W. Wei, P. Wang, L. Zuo, F. Li, J. Xu, X. Xi, X. Gao, G. Ma, and H. Xie, ACS Nano 11, 100190 (2017).Google Scholar
  9. 9.
    L. Icart and F. G. Souza, Jr., Express Polym. Lett. 10, 188 (2016).CrossRefGoogle Scholar
  10. 10.
    E. Cazares-Cortes, A. Espinosa, J.-M. Guigner, A. Michel, N. Griffete, C. Wilhelm, and C. Ménager, ACS Appl. Mater. Interfaces 9, 25775 (2017).CrossRefGoogle Scholar
  11. 11.
    N. A. Stocke, P. Sethi, A. Jyoti, R. Chan, S. M. Arnold, J. Z. Hilt, and M. Upreti, Biomaterials 120, 115 (2017).CrossRefGoogle Scholar
  12. 12.
    F. Wang, Y. Yang, Y. Ling, J. Liu, X. Cai, X. Zhou, X. Tang, B. Liang, Y. Chen, and H. Chen, Biomaterials 128, 84 (2017).CrossRefGoogle Scholar
  13. 13.
    V. Zamora-Mora, M. Fernández-Gutiérrez, Á. González-Gómez, B. Sanz, J. San Román, G. F. Goya, R. Hernández, and C. Mijangos, Carbohydr. Polym. 157, 361 (2017).CrossRefGoogle Scholar
  14. 14.
    S. Gao, M. Zheng, X. Ren, Y. Tang, and X. Liang, Oncotarget 7, 57367 (2016).Google Scholar
  15. 15.
    A. E. Deatsch and B. A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).CrossRefGoogle Scholar
  16. 16.
    A. J. Giustini, A. A. Petryk, S. M. Cassim, J. A. Tate, I. Baker, and P. J. Hoopes, Nano LIFE 1, (2010).Google Scholar
  17. 17.
    J. Cohen, S. Rice, T. Diwanji, S. J. Feigenberg, and Z. Vujaskovic, Cureus 9, e1479 (2017).Google Scholar
  18. 18.
    D. Mazumder, R. M. Vasu, D. Roy, and R. Kanhirodan, Int. J. Hyperthermia 34, 122 (2018).CrossRefGoogle Scholar
  19. 19.
    H. F. Rodrigues, G. Capistrano, F. M. Mello, N. Zufelato, E. Silveira-Lacerda, and A. F. Bakuzis, Phys. Med. Biol. 62, 4062 (2017).CrossRefGoogle Scholar
  20. 20.
    Z. Wei, C. Wang, S. Zou, H. Liu, and Z. Tong, Colloids Surf., A 392, 116 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Muthiah, I.-K. Park, and C.-S. Cho, Biotechnol. Adv. 31, 1224 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Meerod, N. Deepuppha, B. Rutnakornpituk, and M. Rutnakornpituk, J. Appl. Polym. Sci. 135, 46160 (2018).CrossRefGoogle Scholar
  23. 23.
    Z. Hami, S. M. Rezayat, K. Gilani, M. Amini, and M. Ghazi-Khansari, J. Pharm. Pharmacol. 69, 151 (2017).CrossRefGoogle Scholar
  24. 24.
    J. J. P. Merlin, B. Venkadesh, S. S. Rajan, and P. Subramanian, J. Gastrointest Cancer Stromal Tumor 2, 113 (2017).CrossRefGoogle Scholar
  25. 25.
    C. Peres, A. I. Matos, J. Conniot, V. Sainz, E. Zupancic, J. M. Silva, L. Graça, R. S. Gaspar, V. Préat, and H. F. Florindo, Acta Biomater. 48, 41 (2017).CrossRefGoogle Scholar
  26. 26.
    K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol. 101, 8493 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Therias, M. Murariu, and P. Dubois, Polym. Degrad. Stab. 145, 60 (2017).CrossRefGoogle Scholar
  28. 28.
    R. Mülhaupt, Macromol. Chem. Phys. 214, 159 (2013).CrossRefGoogle Scholar
  29. 29.
    S. P. Arnaud, L. Wu, M.-A. W. Chang, J. W. Comerford, T. J. Farmer, M. Schmid, F. Chang, Z. Li, and M. Mascal, Faraday Discuss. 202, 61 (2017).CrossRefGoogle Scholar
  30. 30.
    M. Murariu, L. Bonnaud, P. Yoann, G. Fontaine, S. Bourbigot, and P. Dubois, Polym. Degrad. Stab. 95, 374 (2010).CrossRefGoogle Scholar
  31. 31.
    A. C. Fonseca, C. S. Costa, T. M. Marques, J. F. Coelho, and A. C. Serra, J. Mater. Sci. 52, 1272 (2017).CrossRefGoogle Scholar
  32. 32.
    A. A. Berlin, Polym. Sci., Ser. A 52, 875 (2010).CrossRefGoogle Scholar
  33. 33.
    B. Sengül, R. M. A. El-abassy, A. Materny, and N. Dilsiz, Polym. Sci., Ser. A 59, 891 (2017).CrossRefGoogle Scholar
  34. 34.
    M. I. Shtilman, Polym. Sci., Ser. A 52, 884 (2010).CrossRefGoogle Scholar
  35. 35.
    P. M. S. Souza, A. R. Morales, L. H. I. Mei, and M. A. Marin-Morales, Polimeros 24, 110 (2014).CrossRefGoogle Scholar
  36. 36.
    Q. Chen, J. D. Mangadlao, J. Wallat, A. De Leon, J. K. Pokorski, and R. C. Advincula, ACS Appl. Mater. Interfaces 9, 4015 (2017).CrossRefGoogle Scholar
  37. 37.
    S. Sood, V. K. Gupta, S. Agarwal, K. Dev, and D. Pathania, Int. J. Biol. Macromol. 101, 612 (2017).CrossRefGoogle Scholar
  38. 38.
    D. J. Fernandes, R. Vidal, A. Assayag, R. S. de Biasi, and C. N. Elias, JOM 69, 78 (2017).CrossRefGoogle Scholar
  39. 39.
    D. W. Lee, J. W. Lee, S. B. Kim, J. H. Park, K. S. Chung, J. K. Ha, J. G. Kim, and W. J. Kim, Clin. Orthop. Surg. 9, 270 (2017).CrossRefGoogle Scholar
  40. 40.
    A. Prasad, S. M. Bhasney, M. R. Sankar, and V. Katiyar, Mater. Today: Proc. 4, 1340 (2017).CrossRefGoogle Scholar
  41. 41.
    E. D. Pereira, F. G. Souza, C. I. Santana, D. Q. Soares, A. S. Lemos, and L. R. Menezes, Polym. Eng. Sci. 53, 2308 (2013).CrossRefGoogle Scholar
  42. 42.
    J. Lange, F. G. Souza, Jr., M. Nele, F. W. Tavares, I. S. V. Segtovich, G. C. Q. da Silva, and J. C. Pinto, Macromol. Theory Simul. 25, 45 (2015).CrossRefGoogle Scholar
  43. 43.
    R. James, O. S. Manoukian, and S. G. Kumbar, Adv. Drug Delivery Rev. 107, 277 (2016).CrossRefGoogle Scholar
  44. 44.
    J. Nagata, M. Matsui, and Y. Tabata, J. Biomater. Sci., Polym. Ed. 27, 1291 (2016).CrossRefGoogle Scholar
  45. 45.
    Y. T. Tam, J. Gao, and G. S. Kwon, J. Am. Chem. Soc. 138, 8674 (2016).CrossRefGoogle Scholar
  46. 46.
    W. Neto, L. Peña, G. Ferreira, F. G. Souza, Jr., and F. Machado, Curr. Org. Chem. 20, 1 (2016).Google Scholar
  47. 47.
    M. Gai, J. Frueh, T. Tao, A. V. Petrov, V. V. Petrov, E. V. Shesterikov, S. I. Tverdokhlebov, and G. B. Sukhorukov, Nanoscale 9, 7063 (2017).CrossRefGoogle Scholar
  48. 48.
    A. Pellis, L. Silvestrini, D. Scaini, J. M. Coburn, L. Gardossi, D. L. Kaplan, E. H. Acero, and G. M. Guebitz, Process Biochem. 59, 77 (2017).CrossRefGoogle Scholar
  49. 49.
    M. Hakkarainen, S. Karlsson, and A.-C. Albertsson, J. Appl. Polym. Sci. 76, 228 (2000).CrossRefGoogle Scholar
  50. 50.
    J. M. Anderson and M. S. Shive, Adv. Drug Delivery Rev. 64, 72 (2012).CrossRefGoogle Scholar
  51. 51.
    S. Kumar, S. Singh, S. Senapati, A. P. Singh, B. Ray, and P. Maiti, Int. J. Biol. Macromol. 104, 487 (2017).CrossRefGoogle Scholar
  52. 52.
    M. L. Vadala, M. A. Zalich, D. B. Fulks, T. G. St. Pierre, J. P. Dailey, and J. S. Riffle, J. Magn. Magn. Mater. 293, 162 (2005).CrossRefGoogle Scholar
  53. 53.
    T. J. Madera-Santana, M. Misra, L. T. Drzal, D. Robledo, and Y. Freile-Pelegrin, Polym. Eng. Sci. 49, 117 (2009).CrossRefGoogle Scholar
  54. 54.
    A. Nan, J. Leistner, and R. Turcu, J. Nanopart. Res. 15, 1869 (2013).CrossRefGoogle Scholar
  55. 55.
    S. Mekkapat, B. Thong-On, B. Rutnakornpituk, U. Wichai, and M. Rutnakornpituk, J. Nanopart. Res. 15, 2051 (2013).CrossRefGoogle Scholar
  56. 56.
    M. S. Ata, Y. Liu, and I. Zhitomirsky, RSC Adv. 4, 22716 (2014).CrossRefGoogle Scholar
  57. 57.
    F. G. Souza, Jr., J. A. Marins, C. H. M. Rodrigues, and J. C. Pinto, Macromol. Mater. Eng. 295, 942 (2010).CrossRefGoogle Scholar
  58. 58.
    A. Middea, L. S. Spinelli, F. G. Souza, Jr., R. Neumann, T. L. A. P. Fernandes, and O. da F. M. Gomes, Appl. Clay Sci. 139, 45 (2017).CrossRefGoogle Scholar
  59. 59.
    G. E. Oliveira, J. E. S. Clarindo, K. S. E. Santo, and F. G. Souza, Jr., Mater. Res. 16, 668 (2013)CrossRefGoogle Scholar
  60. 60.
    P. Scherrer, Nachrichten Von Ges. Wiss. Zu Gott. Math.-Phys. Kl. 2, 98 (1918).Google Scholar
  61. 61.
    W. Ruland, Acta Crystallogr. 14, 1180 (1961).CrossRefGoogle Scholar
  62. 62.
    F. G. Souza, Jr., B. G. Soares, and K. Dahmouche, J. Polym. Sci., Part B: Polym. Phys. 45, 3069 (2007).CrossRefGoogle Scholar
  63. 63.
    F. G. Souza, Jr., G. E. Oliveira, C. H. M. Rodrigues, B. G. Soares, M. Nele, and J. C. Pinto, Macromol. Mater. Eng. 294, 484 (2009).CrossRefGoogle Scholar
  64. 64.
    F. G. Souza, Jr., A. C. Ferreira, A. Varela, G. E. Oliveira, F. Machado, E. D. Pereira, E. Fernandes, J. C. Pinto, and M. Nele, Polym. Test. 32, 1466 (2013).CrossRefGoogle Scholar
  65. 65.
    M. E. F. Brollo, J. M. Orozco-Henao, R. López-Ruiz, D. Muraca, C. S. B. Dias, K. R. Pirota, and M. Knobel, J. Magn. Magn. Mater. 397, 20 (2016).CrossRefGoogle Scholar
  66. 66.
    M. G. Martins, MSc Thesis (Universidade Federal do Rio de Janeiro, Rio de Janeiro 2017).Google Scholar
  67. 67.
    A. Vargas and F. G. Souza, Jr., in Biomaterials Science—Processing, Properties, and Applications, Ed. by R. Narayan, A. Bandyopadhay, and S. Bose (John Wiley and Sons, Inc., Hoboken, 2011), Vol. 228, pp. 95–105.CrossRefGoogle Scholar
  68. 68.
    A. Araújo, G. Botelho, M. Oliveira, and A. V. Machado, Appl. Clay Sci. 88–89, 144 (2014).CrossRefGoogle Scholar
  69. 69.
    M. Rudolph, J. Erler, and U. A. Peuker, Colloids Surf., A 397, 16 (2012).CrossRefGoogle Scholar
  70. 70.
    H. Zhao, K. Saatchi, and U. O. Häfeli, J. Magn. Magn. Mater. 321, 1356 (2009).CrossRefGoogle Scholar
  71. 71.
    N. K. Subramani, S. Kasargod Nagaraj, S. Shivanna, and H. Siddaramaiah, Macromolecules 49, 2791 (2016).CrossRefGoogle Scholar
  72. 72.
    R. V. Ferreira, I. L. S. Pereira, L. C. D. Cavalcante, L. F. Gamarra, S. M. Carneiro, E. Amaro, J. D. Fabris, R. Z. Domingues, and A. L. Andrade, Hyperfine Interact. 195, 265 (2010).CrossRefGoogle Scholar
  73. 73.
    R. C. da Costa and F. G. Souza, Jr., Polimeros 24, 243 (2014).CrossRefGoogle Scholar
  74. 74.
    F. D. Marques, M. Nele de Souza, and F. G. Souza, Jr., J. Appl. Polym. Sci. 134, 45549 (2017).CrossRefGoogle Scholar
  75. 75.
    A. L. Glover, J. B. Bennett, J. S. Pritchett, S. M. Nikles, D. E. Nikles, J. A. Nikles, and C. S. Brazel, IEEE Trans. Magn. 49, 231 (2013).CrossRefGoogle Scholar
  76. 76.
    A. Sette, J. Spadavecchia, J. Landoulsi, S. Casale, B. Haye, O. Crociani, and A. Arcangeli, J. Nanopart. Res. 15, 1 (2013).CrossRefGoogle Scholar
  77. 77.
    M. Starowicz, P. Starowicz, J. Zukrowski, J. Przewoznik, A. Lemanski, C. Kapusta, and J. Banas, J. Nanopart. Res. 13, 7167 (2011).CrossRefGoogle Scholar
  78. 78.
    M. Bloemen, W. Brullot, T. T. Luong, N. Geukens, A. Gils, and T. Verbiest, J. Nanopart. Res. 14, 1 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Tayana Cristina de Araújo Segura
    • 1
  • Emiliane Daher Pereira
    • 1
  • Luis Peña Icart
    • 2
  • Edson Fernandes
    • 3
  • Geiza Esperandio de Oliveira
    • 3
  • Fernando Gomes de SouzaJr.
    • 1
    • 3
    Email author
  1. 1.Instituto de Macromoléculas, Centro de Tecnologia–Cidade UniversitáriaUniversidade Federal de Rio de JaneiroRio de JaneiroBrasil
  2. 2.Faculdade de Farmácia, Centro de Ciências da Saúde–Cidade UniversitáriaUniversidade Federal de Rio de JaneiroRio de JaneiroBrasil
  3. 3.Programa de Engenharia Civil, COPPE, Centro de Tecnologia-Cidade UniversitáriaUniversidade Federal de Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations