Advertisement

Polymer Science, Series B

, Volume 60, Issue 6, pp 760–771 | Cite as

Kinetic Features of Photoinduced Radical (Co)Polymerization of Ionic Monomers

  • R. S. KovylinEmail author
  • S. A. Chesnokov
  • A. S. Shaplov
  • P. S. Vlasov
  • D. O. Ponkratov
  • E. I. Lozinskaya
  • Ya. S. Vygodskii
Functional Polymers
  • 3 Downloads

Abstract

A number of methacrylate ionic monomers with different ionic center nature, spacer structure, and position of the polymerizing group (in anion or cation) are synthesized. The kinetics of their photoinitiated radical (co)polymerization is studied by the thermographic method. Effects of the structure of ionic monomer, its ratio with the crosslinking agent poly(ethylene glycol dimethacrylate) (PEGDM-750) in the photopolymerizing composition, and the nature of the reaction medium on the kinetic parameters of the process, namely, the maximum rate Wmax, the degree of conversion Г, and the time of induction period tind, are investigated. It is shown that, among the studied methacrylic monomers, anionic monomer N-butyl-N-methylpyrrolidinium 1-[3-(methacryloyloxy)propylsulfonyl] (trifluoromethanesulfonyl)imide (ILM-5) exhibits the highest reactivity in both bulk and solution (in ionic medium) photopolymerization: Wmax = 69 × 10–3 s–1 and Г = 85% and Wmax = 60 × 10–3 s–1 and Г = 90%, respectively. For most cationic monomers, better results in homopolymerization are achieved in dimethylformamide. The kinetic features of the radical copolymerization of the ionic monomers with PEGDM-750 are studied. It is shown that, with a growing fraction of the crosslinking agent in the monomer mixture, Wmax and Г increase regardless of whether the process occurs in bulk or solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Shaplov, R. Marcilla, and D. Mecerreyes, Electrochim. Acta 175, 18 (2015).CrossRefGoogle Scholar
  2. 2.
    A. S. Shaplov, D. O. Ponkratov, and Y. S. Vygodskii, Polym. Sci., Ser. B 58, 73 (2016).CrossRefGoogle Scholar
  3. 3.
    A. Eftekhari and T. Saito, Eur. Polym. J. 90, 245 (2017).CrossRefGoogle Scholar
  4. 4.
    A. S. Shaplov, E. I. Lozinskaya, and Y. S. Vygodskii, in Electrochemical Properties and Applications of Ionic Liquids (Nova Sci. Publ., New York, 2010), Chap. 9, p. 373.Google Scholar
  5. 5.
    W. Xu, P. A. Ledin, V. V. Shevchenko, and V. V. Tsukruk, ACS Appl. Mater. Interfaces 7, 12570 (2015).CrossRefGoogle Scholar
  6. 6.
    J. Yuan, D. Mecerreyes, and M. Antonietti, Prog. Polym. Sci. 38, 1009 (2013).CrossRefGoogle Scholar
  7. 7.
    A. S. Shaplov, D. O. Ponkratov, P. S. Vlasov, E. I. Lozinskaya, I. A. Malyshkina, F. Vidal, P. H. Aubert, M. Armand, and Y. S. Vygodskii, Polym. Sci., Ser. B 56, 164 (2014).CrossRefGoogle Scholar
  8. 8.
    K. Suzuki, M. Yamaguchi, S. Hotta, N. Tanabe, and S. Yanagida, J. Photochem. Photobiol., A 164, 81 (2004).CrossRefGoogle Scholar
  9. 9.
    R. Marcilla, M. Sanchez-Paniagua, B. Lopez-Ruiz, E. Lopez-Cabarcos, E. Ochoteco, H. Grande, and D. Mecerreyes, J. Polym. Sci., Part A: Polym. Chem. 44, 3958 (2006).CrossRefGoogle Scholar
  10. 10.
    D. Zhou, G. M. Spinks, G. G. Wallace, C. Tiyapiboonchaiya, D. R. MacFarlane, M. Forsyth, and J. Sun, Electrochim. Acta 48, 2355 (2003).CrossRefGoogle Scholar
  11. 11.
    F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, Synth. Met. 142, 287 (2004).CrossRefGoogle Scholar
  12. 12.
    D. Mecerreyes, Prog. Polym. Sci. 36, 1629 (2011).CrossRefGoogle Scholar
  13. 13.
    L. C. Tomé and I. M. Marrucho, Chem. Soc. Rev. 45, 2785 (2016).CrossRefGoogle Scholar
  14. 14.
    M. Kárászová, M. Kacirková, K. Friess, and P. Izák, Sep. Purif. Technol. 132, 93 (2014).CrossRefGoogle Scholar
  15. 15.
    Y. Men, M. Drechsler, and J. Yuan, Macromol. Rapid Commun. 34, 1721 (2013).CrossRefGoogle Scholar
  16. 16.
    R. Losada and C. Wandrey, Macromol. Rapid Commun. 29, 252 (2008).CrossRefGoogle Scholar
  17. 17.
    R. Losada and C. Wandrey, Macromolecules 42, 3285 (2009).CrossRefGoogle Scholar
  18. 18.
    H. Chen, J.-H. Choi, D. Salas-De la Cruz, K. I. Winey, and Y. A. Elabd, Macromolecules 42, 4809 (2009).CrossRefGoogle Scholar
  19. 19.
    H. Tang, J. Tang, S. Ding, M. Radosz, and Y. Shen, J. Polym. Sci., Part A: Polym. Chem. 43, 1432 (2005).CrossRefGoogle Scholar
  20. 20.
    H. Ohno, M. Yoshizawa, and W. Ogihara, Electrochim. Acta 50, 255 (2004).CrossRefGoogle Scholar
  21. 21.
    H. Mori, M. Yahagi, and T. Endo, Macromolecules 42, 8082 (2009).CrossRefGoogle Scholar
  22. 22.
    H. Zhou, Z. Jiménez, J. A. Pojman, M. S. Paley, and C. E. Hoyle, J. Polym. Sci., Part A: Polym. Chem. 4, 3766 (2008).CrossRefGoogle Scholar
  23. 23.
    Z. Jiménez, C. Bounds, C. E. Hoyle, A. B. Lowe, H. Zhou, and J. A. Pojman, J. Polym. Sci., Part A: Polym. Chem. 45, 3009 (2007).CrossRefGoogle Scholar
  24. 24.
    K. Matsumoto, B. Talukdar, and T. Endo, Polym. Bull. 66, 199 (2011).CrossRefGoogle Scholar
  25. 25.
    Y. S. Vygodskii, O. A. Mel’nik, A. S. Shaplov, E. I. Lozinskaya, I. A. Malyshkina, and N. D. Gavrilova, Polym. Sci., Ser. A 49, 256 (2007).CrossRefGoogle Scholar
  26. 26.
    S. A. Chesnokov, M. Y. Zakharina, A. S. Shaplov, E. I. Lozinskaya, I. A. Malyshkina, G. A. Abakumov, F. Vidal, and Y. S. Vygodskii, J. Polym. Sci., Part A: Polym. Chem. 48, 2388 (2010).CrossRefGoogle Scholar
  27. 27.
    P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel, Inorg. Chem. 35, 1168 (1996).CrossRefGoogle Scholar
  28. 28.
    P. Meakin, J. Sun, N. Amini, and M. Forsyth, J. Phys. Chem. B 103, 4164 (1999).CrossRefGoogle Scholar
  29. 29.
    A. S. Shaplov, D. O. Ponkratov, P. S. Vlasov, E. I. Lozinskaya, L. I. Komarova, I. A. Malyshkina, F. Vidal, G. T. M. Nguyen, M. Armand, C. Wandrey, and Y. S. Vygodskii, Polym. Sci., Ser. B 55, 122 (2013).CrossRefGoogle Scholar
  30. 30.
    A. S. Shaplov, E. I. Lozinskaya, D. O. Ponkratov, I. A. Malyshkina, F. Vidal, P.-H. Aubert, O. V. Okatova, G. M. Pavlov, L. I. Komarova, C. Wandrey, and Y. S. Vygodskii, Electrochim. Acta 57, 74 (2011).CrossRefGoogle Scholar
  31. 31.
    A. S. Shaplov, P. S. Vlasov, E. I. Lozinskaya, D. O. Ponkratov, I. A. Malyshkina, F. Vidal, O. V. Okatova, G. M. Pavlov, C. Wandrey, A. Bhide, M. Schönhoff, and Y. S. Vygodskii, Macromolecules 44, 9792 (2011).CrossRefGoogle Scholar
  32. 32.
    A. S. Shaplov, P. S. Vlasov, E. I. Lozinskaya, O. A. Shishkan, D. O. Ponkratov, I. A. Malyshkina, F. Vidal, C. Wandrey, I. A. Godovikov, and Y. S. Vygodskii, Macromol. Chem. Phys. 213, 1359 (2012).CrossRefGoogle Scholar
  33. 33.
    A. S. Shaplov, P. S. Vlasov, M. Armand, E. I. Lozinskaya, D. O. Ponkratov, I. A. Malyshkina, F. Vidal, O. V. Okatova, G. M. Pavlov, C. Wandrey, I. A. Godovikov, and Y. S. Vygodskii, Polym. Chem. 2, 2609 (2011).CrossRefGoogle Scholar
  34. 34.
    V. I. Arulin and L. I. Efimov, Tr. Khim. Khim. Tekhnol., No. 2, 74 (1970).Google Scholar
  35. 35.
    E. Andrzejewska, L.-A. Lindén, and J. F. Rabek, Macromol. Chem. Phys. 199, 441 (1998).CrossRefGoogle Scholar
  36. 36.
    S. Patai, The Chemistry of the Quinonoid Compounds (Wiley, London, 1974).Google Scholar
  37. 37.
    S. A. Chesnokov, V. K. Cherkasov, G. A. Abakumov, O. N. Mamysheva, M. Y. Zakharina, N. Y. Shushunova, Y. V. Chechet, and V. A. Kuropatov, Polym. Sci., Ser. B 56, 11 (2014).CrossRefGoogle Scholar
  38. 38.
    M. P. Shurygina, Y. A. Kurskii, S. A. Chesnokov, and G. A. Abakumov, Tetrahedron 64, 1459 (2008).CrossRefGoogle Scholar
  39. 39.
    M. P. Shurygina, Y. A. Kurskii, N. O. Druzhkov, S. A. Chesnokov, and G. A. Abakumov, High Energy Chem. 44, 234 (2010).CrossRefGoogle Scholar
  40. 40.
    A. S. Shaplov, L. Goujon, F. Vidal, E. I. Lozinskaya, F. Meyer, I. A. Malyshkina, C. Chevrot, D. Teyssie, I. L. Odinets, and Ya. S. Vygodskii, J. Polym. Sci., Part A: Polym. Chem. 47, 4245 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. S. Kovylin
    • 1
    Email author
  • S. A. Chesnokov
    • 1
  • A. S. Shaplov
    • 2
    • 4
  • P. S. Vlasov
    • 3
  • D. O. Ponkratov
    • 4
  • E. I. Lozinskaya
    • 4
  • Ya. S. Vygodskii
    • 4
  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Luxembourg Institute of Science and Technology (LIST)Esch-sur-AlzetteLuxembourg
  3. 3.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations