Polymer Science, Series B

, Volume 60, Issue 6, pp 717–726 | Cite as

Oxidative Polymerization of 3,6-Dianiline-2,5-dichlorobenzoquinone and Its Copolymerization with Aniline

  • S. G. KiselevaEmail author
  • A. V. Orlov
  • G. N. Bondarenko
  • G. P. Karpacheva


The oxidative polymerization of 3,6-dianiline-2,5-dichlorobenzoquinone is studied for the first time and it is shown that its reactivity in oxidation processes is higher than that of aniline. The influence of concentration, reagent ratio, and the acidity and temperature of reaction solution on the oxidation reaction is investigated. The specific features of polymerization of 3,6-dianiline-2,5-dichlorobenzoquinone determined by the presence of a chloranil substituent at the nitrogen atom are revealed. Poly(3,6-dianiline-2,5-dichlorobenzoquinone) has a highly ordered supramolecular structure. The copolymerization of 3,6-dianiline-2,5-dichlorobenzoquinone with aniline is studied, and it is found that the reaction kinetics and the degree of copolymer oxidation are determined by aniline content in the monomer mixture.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Genies, A. Boyl, M. Lapkowski, and C. Tsintavis, Synth. Met. 36, 139 (1990).CrossRefGoogle Scholar
  2. 2.
    H. Okamoto, M. Okamoto, and T. Kotaka, Polymer 39, 4359 (1998).CrossRefGoogle Scholar
  3. 3.
    Lj. D. Arson, W. Plieth, and G. Kossmehl, J. Solid State Electrochem. 2, 355 (1998).CrossRefGoogle Scholar
  4. 4.
    Y. Cao, A. Andretta, A. J. Heeger, and P. Smith, Polymer 30, 2305 (1989).CrossRefGoogle Scholar
  5. 5.
    C.-H. Hsu, P. M. Peacock, R. B. Flippen, S. K. Manohar, and A. G. MacDiarmid, Synth. Met. 193, 233 (1993).CrossRefGoogle Scholar
  6. 6.
    E. J. Oh, Y. Min, J. M. Weisinger, S. K. Manohar, E.M. Scerr, P. J. Prest, A. G. MacDiarmid, and A. J. Epstein, Synth. Met. 55–57, 977 (1993).CrossRefGoogle Scholar
  7. 7.
    G. Boara and M. Sparpaglione, Synth. Met. 72, 135 (1995).CrossRefGoogle Scholar
  8. 8.
    Zh. Jin, Y. Su, and Y. Duan, Sens. Actuators, B 71, 118 (2000).CrossRefGoogle Scholar
  9. 9.
    L. Yu, J.-II Lee, K.-W. Shin, Ch.-E. Park, and R. Holze, J. Appl. Polym. Sci. 88, 1550 (2003).CrossRefGoogle Scholar
  10. 10.
    R. B. Kaner, Synth. Met. 125, 65 (2002).CrossRefGoogle Scholar
  11. 11.
    L. Jiang and Z. Cui, Polym. Bull. 56, 529 (2006).CrossRefGoogle Scholar
  12. 12.
    A. P. Monkman, P. N. Adams, P. J. Laughin, and E. R. Holland, Synth. Met. 69, 183 (1995).CrossRefGoogle Scholar
  13. 13.
    I. Yu. Sapurina and Ya. Steiskal, Russ. Chem. Rev. 79, 1123 (2010).CrossRefGoogle Scholar
  14. 14.
    M. C. Aronson, M. Aldissi, and J. D. Thompson, Synth. Met. 41–43, 837 (1991).CrossRefGoogle Scholar
  15. 15.
    Sh.-J. Su and N. Kuramoto, Synth. Met. 108, 121 (2000).CrossRefGoogle Scholar
  16. 16.
    A. V. Orlov, S. G. Kiseleva, O. Yu. Yurchenko, and G. P. Karpacheva, Polym. Sci., Ser. A 42, 1292 (2000).Google Scholar
  17. 17.
    A. V. Orlov, S. G. Kiseleva, O. Yu. Yurchenko, V. S. Razuvaeva, and G. P. Karpacheva, Polym. Sci., Ser. A 43, 572 (2001).Google Scholar
  18. 18.
    A. A. Pud, M. Tabellout, A. Kassiba, A. A. Korzhenko, S. P. Rogalsky, G. S. Shapoval, F. Holze, O. Schneegans, and J. R. Emery, J. Mater. Sci. 36, 3355 (2001).CrossRefGoogle Scholar
  19. 19.
    F. Huang, E. Vanhaecke, and D. Chen, Catal. Today 150, 71 (2010).CrossRefGoogle Scholar
  20. 20.
    A. V. Orlov, S. G. Kiseleva, G. P. Karpacheva, V. V. Teplyakov, D. A. Syrtsova, L. E. Starannikova, and T. L. Lebedeva, J. Appl. Polym. Sci. 89, 1379 (2003).CrossRefGoogle Scholar
  21. 21.
    A. V. Semakov, A. A. Shabeko, S. G. Kiseleva, A. V. Orlov, A. V. Rebrov, Yu. M. Korolev, G. P. Karpacheva, V. N. Kuleznev, and V. G. Kulichikhin, Polym. Sci., Ser. B 52, 91 (2010).CrossRefGoogle Scholar
  22. 22.
    L. Liu, J. Yang, Y. Jiang, Y. Huang, and Q. Meng, Synth. Met. 170, 57 (2013).CrossRefGoogle Scholar
  23. 23.
    A. Thyssen, A. Hochfeld, R. Kessel, A. Meyer, and J. W. Schultze, Synth. Met. 29, 357 (1989).CrossRefGoogle Scholar
  24. 24.
    C. O. Sanches, C. J. Bustos, D. A. Carey, and L. Mac, Polym. Bull. 54, 263 (2005).CrossRefGoogle Scholar
  25. 25.
    X.-G. Li, H.-J. Zhou, and M.-R. Huang, Polymer 46, 1523 (2005).CrossRefGoogle Scholar
  26. 26.
    A. Malinauskas and R. Holze, Electrochim. Acta 44, 2613 (1999).CrossRefGoogle Scholar
  27. 27.
    A. V. Orlov, S. Zh. Ozkan, G. N. Bondarenko, and G. P. Karpacheva, Polym. Sci., Ser. B 48, 5 (2006).CrossRefGoogle Scholar
  28. 28.
    W. A. Gazotti and M.-A. De Paoli, Synth. Met. 80, 263 (1996).CrossRefGoogle Scholar
  29. 29.
    O. I. Negru and M. Grigoras, Colloid Polym. Sci. 292, 143 (2014).CrossRefGoogle Scholar
  30. 30.
    B. Gercek, M. Yavuz, H. Yilmaz, B. Sari, and H. I. Unal, Colloids Surf., A 299, 124 (2007).CrossRefGoogle Scholar
  31. 31.
    D.-P. Kang and M.-S. Yun, Synth. Met. 29, 343 (1989).CrossRefGoogle Scholar
  32. 32.
    O. G. Voronin, E. V. Konishcheva, N. A. Zorin, F. A. Fedotenkov, E. E. Karyakina, G. P. Karpacheva, A. V. Orlov, S. G. Kiseleva, and A. A. Karyakin, Nano-Mikrosist. Tekh., No. 5, 15 (2013).Google Scholar
  33. 33.
    V. V. Abalyaeva, A. V. Orlov, S. G. Kiseleva, O. N. Efimov, and G. P. Karpacheva, Russ. J. Electrochem. 53, 210 (2017).CrossRefGoogle Scholar
  34. 34.
    V. V. Abalyaeva, L. I. Tkachenko, G. V. Nikolaeva, A. V. Orlov, S. G. Kiseleva, O. N. Efimov, and G. P. Karpacheva, Polym. Sci., Ser. B 59, 459 (2017).CrossRefGoogle Scholar
  35. 35.
    K. Tzou and R. V. Gregory, Synth. Met. 47, 267 (1992).CrossRefGoogle Scholar
  36. 36.
    J. Stejskal, P. Kratochvil, and M. Spirkova, Polymer 36, 4135 (1995).CrossRefGoogle Scholar
  37. 37.
    J. Stejskal, I. Sapurina, and M. Trchova, Prog. Polym. Sci. 35, 1420 (2010).CrossRefGoogle Scholar
  38. 38.
    H. Okamoto and T. Kotaka, Polymer 39, 4349 (1998).CrossRefGoogle Scholar
  39. 39.
    A. Zimmermann, U. Künzelmann, and L. Dunsch, Synth. Met. 93, 17 (1998).CrossRefGoogle Scholar
  40. 40.
    J. Y. Shimano and A. G. MacDiarmid, Synth. Met. 123, 251 (2001).CrossRefGoogle Scholar
  41. 41.
    Ya. O. Mezhuev, Yu. V. Korshak, M. I. Shtil’man, A. A. Koledenkov, M. S. Ustinova, and I. N. Semenova, Plast. Massy, No. 2, 22 (2011).Google Scholar
  42. 42.
    B. P. S. Gautam, M. Srivatsava, R. L. Prasad, and R. A. Yadav, Spectrochim. Acta, Part A 129, 241 (2014).CrossRefGoogle Scholar
  43. 43.
    M. Batra, P. Kriplani, Ch. Batra, and K. G. Ojha, Bioorg. Med. Chem. 14, 8519 (2006).CrossRefGoogle Scholar
  44. 44.
    N. V. Bhat, D. T. Seshadri, and S. R. Phadke, Synth. Met. 130, 185 (2002).CrossRefGoogle Scholar
  45. 45.
    G.-W. Hwang, K.-Y. Wu, H.-T. Hua, and S.-A. Chen, Synth. Met. 92, 39 (1998).CrossRefGoogle Scholar
  46. 46.
    R. Sivakumar and R. Saraswathi, Synth. Met. 138, 381 (2003).CrossRefGoogle Scholar
  47. 47.
    M. S. Refat, O. B. Ibrahim, H. Al-Didamony, K. M. A. El-Noir, and L. El-Zayat, J. Saudi Chem. Soc. 16, 227 (2012).CrossRefGoogle Scholar
  48. 48.
    C. H.B. Silva, D. C. Ferreira, R. A. Ando, and M. L. A. Temperini, Chem. Phys. Lett. 551, 130 (2012).CrossRefGoogle Scholar
  49. 49.
    S. P. Surwade, V. Dua, N. Manohar, S. K. Manohar, E. Beck, and J. P. Ferraris, Synth. Met. 159, 445 (2009).CrossRefGoogle Scholar
  50. 50.
    J. Stejskal, P. Bober, M. Trchova, J. Horsky, and J. Pilar, Synth. Met. 192, 66 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. G. Kiseleva
    • 1
    Email author
  • A. V. Orlov
    • 1
  • G. N. Bondarenko
    • 1
  • G. P. Karpacheva
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations