Advertisement

Polymer Science, Series B

, Volume 60, Issue 6, pp 772–779 | Cite as

Synthesis and Characterization of Poly(ether ether ketone-co-benzimidazole)s Based on 2-(2'-Hydroxyphenyl) benzimidazole

  • Jiaao Feng
  • Hongyang Deng
  • Yewei XuEmail author
  • Guanjun Chang
  • Tiantian Qin
  • Hongbo Ren
  • Yutie Bi
  • Jiayi Zhu
  • Yi Sun
  • Lin Zhang
Functional Polymers

Abstract

A series of novel poly(ether ether ketone)s containing benzimidazole groups with precise structures in high yields were synthesized from various stoichiometric ratio mixtures of m-dihydroxybenzene, 2-(2'- hydroxyphenyl)benzimidazole and 4,4′-difluorodiphenylmethanone via a C–N/C–O coupling reaction process using sulfolane as a solvent. The reaction was carried out at 210°C in the presence of anhydrous potassium carbonate. The structures of the resulted polymers were characterized by means of FTIR, 1H NMR spectroscopy, elemental analysis, and the results were largely consistent with the proposed structure. XRD studies indicated that the resulted polymers are non-crystalline. The polymers have good solubilities in common organic solvents. The polymers showed high glass transition temperatures (Tg = 125–237°C) and high thermal stability (Td5% = 497–539°C in nitrogen, 466–548°C in air). At the same time, as the benzimidazole unit content in the copolymer increased, the thermal properties of the prepared polymers improved. Moreover, the resulted polymers showed good fluorescence properties and the fluorescence emission peak was 465 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Dwivedi, S. Alam, and G. L. Verma, Polym. Int. 54, 401 (2005).CrossRefGoogle Scholar
  2. 2.
    S. Gahlot and V. Kulshrestha, ACS Appl. Mater. Interafaces 7, 264 (2015).CrossRefGoogle Scholar
  3. 3.
    S. Najeeb, M. S. Zafar, Z. Khurshid, and F. Siddiqui, J. Prosthodontic Res. 60, 12 (2016).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, D. Ren, S. Guan, Y. Na, G. Wang, and Z. Jiang, e-Polym. 9, 997 (2013).Google Scholar
  5. 5.
    J. Mu, C. Zhang, W. Wu, Z. Jiang, V. V. Kireev, and E. A. Karpuzova, Polym. Sci., Ser. B 49, 203 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Cai, M. Zhu, Y. Sun, and J. Qian, React. Funct. Polym. 70, 182 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Liu, W. Luo, H. Zhang, X. Li, W. Hu, M.D. Guiver, and B. Liu, React. Funct. Polym. 111, 7 (2017).CrossRefGoogle Scholar
  8. 8.
    A. C. de Leon, Q. Chen, N.B. Palaganas, J. O. Palaganas, J. Manapat, and R. C. Advincula, React. Funct. Polym. 103, 141 (2016).CrossRefGoogle Scholar
  9. 9.
    A.K. Salunke, M.K. Madhra, M. Sharma, and S. Banerjee, J. Polym. Sci., Part A: Polym. Chem. 40, 55 (2002).CrossRefGoogle Scholar
  10. 10.
    G. Qian, D. W. Smith, and B. C. Benicewicz, Polymer 50, 3911 (2009).CrossRefGoogle Scholar
  11. 11.
    D. Shukla, Y. S. Negi, J. S. Uppadhyaya, and V. Kumar, Polym. Rev. 52, 189 (2012).CrossRefGoogle Scholar
  12. 12.
    L. Ying, X.-L. Yang, J. Feng, C.-Y. Wang, and L. Cheng, Mater. Sci. Eng., B 132, 20 (2006).CrossRefGoogle Scholar
  13. 13.
    P. Liu, M. Mullins, T. Bremner, J. A. Browne, and H. J. Sue, Polymer 93, 88 (2016).CrossRefGoogle Scholar
  14. 14.
    Y. Niu, X. Zhu, L. Liu, Y. Zhang, G. Wang, and Z. Jiang, React. Funct. Polym. 66, 559 (2006).CrossRefGoogle Scholar
  15. 15.
    F. Wang, Z. Wang, H. Wang, and G. Zhou, Polym. Int. 64, 258 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. Xu, X. Cui, F. Zhu, X. Luo, Q. Yin, and L. Zhang, Polym. Int. 63, 537 (2014).CrossRefGoogle Scholar
  17. 17.
    Y. Xu, J. Tang, G. Chang, F. Zhu, X. Luo, and L. Zhang, Macromol. Res. 21, 681 (2012).CrossRefGoogle Scholar
  18. 18.
    Q. Zhang, Y. Xu, Y. Sun, and L. Zhang, Polym. Sci., Ser. B 58, 541 (2016).CrossRefGoogle Scholar
  19. 19.
    A.A. Mir and A.S. Hay, J. Polym. Sci., Part A: Polym. Chem. 50, 4800 (2012).CrossRefGoogle Scholar
  20. 20.
    A. Sannigrahi, S. Ghosh, S. Maity, and T. Jana, Polymer 51, 5929 (2010).CrossRefGoogle Scholar
  21. 21.
    J. M. Abendroth, O. S. Bushuyev, P. S. Weiss, and C. J. Barrett, ACS Nano 9, 7746 (2015).CrossRefGoogle Scholar
  22. 22.
    S. J. Mcinnes, Y. Irani, K. A. Williams, and N. H. Voelcker, Nanomedicine 7, 995 (2012).CrossRefGoogle Scholar
  23. 23.
    R. H. Vora, Mater. Sci. Eng., B 168, 71 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Park and Y. G. Jeong, Macromolecules 48, 8823 (2015).CrossRefGoogle Scholar
  25. 25.
    Z. Gao, X. Zhang, and Y. Chen, Dyes Pigments 113, 257 (2015).CrossRefGoogle Scholar
  26. 26.
    N. Abid-Jarraya, K. Khemakhem, H. Turki-Guermazi, S. Abid, N. Saffon, and S. Fery-Forgues, Dyes Pigments 132, 177 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Jiaao Feng
    • 1
    • 2
    • 3
  • Hongyang Deng
    • 2
    • 3
  • Yewei Xu
    • 2
    • 3
    Email author
  • Guanjun Chang
    • 2
    • 3
  • Tiantian Qin
    • 2
  • Hongbo Ren
    • 3
  • Yutie Bi
    • 3
  • Jiayi Zhu
    • 3
  • Yi Sun
    • 2
  • Lin Zhang
    • 1
    • 3
  1. 1.Science and Technology on Plasma Physics Laboratory, Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangChina
  2. 2.School of Material Science and Engineering and State Key Laboratory of Environmental Friendly Energy MaterialsSouthwest University of Science and TechnologyMianyangChina
  3. 3.Joint Laboratory for Extreme Conditions Matter PropertiesSouthwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering PhysicsMianyangChina

Personalised recommendations