Advertisement

Polymer Science, Series B

, Volume 60, Issue 6, pp 735–745 | Cite as

Cross-Metathesis and Hydrogenation in Polynorbornene–Poly(5-hydroxyoctenamer) Mixture in the Presence of Grubbs’ Catalysts

  • Yu. I. DenisovaEmail author
  • A. V. Roenko
  • M. L. Gringolts
  • L. B. Krentsel
  • A. S. Peregudov
  • G. A. Shandryuk
  • E. Sh. Finkelshtein
  • Y. V. Kudryavtsev
Chemical Transformations
  • 1 Downloads

Abstract

An exchange reaction of cross-metathesis between polynorbornene and poly(5-hydroxyoctenamer) in a chloroform–methanol mixture (10: 1 vol/vol) in the presence of Ru–carbene Grubbs’ complexes Gr-1 and Gr-2 has been studied. Gr-2 catalyst has a much higher activity and allows one to obtain multiblock copolymers, which cannot be synthesized directly from norbornene and 5-hydroxy-1-cyclooctene. The average length of the copolymer blocks varies in a wide range depending on the reaction conditions. The individual stages of the process have been studied with the use of in situ monitoring of transformations of Ru–carbene complexes by 1Н NMR spectroscopy and ex situ analysis of heterodyad evolution in copolymers via 13C NMR spectroscopy. As has been shown, poly(5-hydroxyoctenamer) forms Ru–carbene complexes with the catalyst more easily than polynorbornene; in this case, the incorporation of a substituent in the monomer unit of octenamer retards the polymer cross-metathesis. It has been found that, in systems containing Gr-2 and hydroxyoctenamer blocks, the formed ruthenium hydride complexes initiated hydrogenation process. The hydrogenation results in the appearance of crystallinity in the initially amorphous polymers, which opens up the possibilities for the targeted control of the multiblock copolymers properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. Ivin and J. C. Mol, Olefin Metathesis and Metathesis Polymerization (Academic Press, London, 1997).Google Scholar
  2. 2.
    P. R. Schleyer, J. E. Williams, and K. R. Blanchard, J. Am. Chem. Soc. 92, 2377 (1970).CrossRefGoogle Scholar
  3. 3.
    M. Bornand and P. Chen, Angew. Chem., Int. Ed. 44, 7909 (2005).CrossRefGoogle Scholar
  4. 4.
    M. Bornand, S. Torker, and P. Chen, Organometallics 26, 3585 (2007).CrossRefGoogle Scholar
  5. 5.
    S. Torker, A. Muller, R. Sigrist, and P. Chen, Organometallics 29, 2735 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Vehlow, D. Wang, M. R. Buchmeiser, and S. Blechert, Angew. Chem., Int. Ed. 47, 2615 (2008).CrossRefGoogle Scholar
  7. 7.
    M. Lichtenheldt, D. Wang, K. Vehlow, I. Reinhardt, C. Kuhnel, U. Decker, S. Blechert, and M. R. Buchmeiser, Chem.-Eur. J. 15, 9451 (2009).CrossRefGoogle Scholar
  8. 8.
    M. R. Buchmeiser, I. Ahmad, V. Gurram, and P. S. Kumar, Macromolecules 44, 4098 (2011).CrossRefGoogle Scholar
  9. 9.
    M. F. Ilker and E. Bryan, Macromolecules 35, 54 (2002).CrossRefGoogle Scholar
  10. 10.
    J. Romulus, S. Patel, and M. Weck, Macromolecules 45, 70 (2012).CrossRefGoogle Scholar
  11. 11.
    C. S. Daeffler and R. H. Grubbs, Macromolecules 46, 3288 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Martinez, N. Ren, M. E. Matta, and M. A. Hillmyer, Polym. Chem. 5, 3507 (2014).CrossRefGoogle Scholar
  13. 13.
    M. A. Hillmyer, W. R. Laredo, and R. H. Grubbs, Macromolecules 28, 6311 (1995).CrossRefGoogle Scholar
  14. 14.
    H. Han, F. Chen, J. Yu, J. Dang, Z. Ma, Y. Zhang, and M. Xie, J. Polym. Sci., Part A: Polym. Chem. 45, 3986 (2007).CrossRefGoogle Scholar
  15. 15.
    C. W. Bielawski and R. H. Grubbs, Angew. Chem., Int. Ed. 39, 2903 (2000).CrossRefGoogle Scholar
  16. 16.
    A. K. Diallo, L. Annunziata, S. Fouquay, G. Michaud, F. Simon, J.-M. Brusson, S. M. Guillaume, and J.-F. Carpentier, Polym. Chem. 5, 2583 (2014).CrossRefGoogle Scholar
  17. 17.
    S. E. Lehman, Jr., K. B. Wagener, L. S. Baugh, S. P. Rucker, D. N. Schulz, M. Varma-Nair, and E. Berluche, Macromolecules 40, 2643 (2007).CrossRefGoogle Scholar
  18. 18.
    Y. I. Denisova, M. L. Gringolts, A. V. Roenko, G. A. Shandryuk, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Mendeleev Commun. 27, 416 (2017).CrossRefGoogle Scholar
  19. 19.
    N. L. Wagner, F. J. Timmers, D. J. Arriola, G. Jueptner, and B. G. Landes, Macromol. Rapid Commun. 29, 1438 (2008).CrossRefGoogle Scholar
  20. 20.
    H. Otsuka, T. Muta, M. Sakada, T. Maeda, and A. Takahara, Chem. Commun. 2009, 1073 (2009).CrossRefGoogle Scholar
  21. 21.
    T. Maeda, S. Kamimura, T. Ohishi, A. Takahara, and H. Otsuka, Polymer 55, 6245 (2014).CrossRefGoogle Scholar
  22. 22.
    T. Ohishi, K. Suyama, S. Kamimura, K. Imato, S. Kawahara, A. Takahara, and H. Otsuka, Polymer 78, 145 (2015).CrossRefGoogle Scholar
  23. 23.
    S. Daniele, A. Mariconda, G. Guerra, P. Longo, and L. Giannin, Polymer 130, 143 (2017).CrossRefGoogle Scholar
  24. 24.
    M. R. Radlauer, M. E. Matta, and M. A. Hillmyer, Polym. Chem. 7, 6269 (2016).CrossRefGoogle Scholar
  25. 25.
    M. L. Gringolts, Yu. I. Denisova, G. A. Shandryuk, L. B. Krentsel, A. D. Litmanovich, E. S. Finkelshtein, and Y. V. Kudryavtsev, RSC Adv. 5, 316 (2015).CrossRefGoogle Scholar
  26. 26.
    Yu. I. Denisova, M. L. Gringolts, A. S. Peregudov, L. B. Krentsel’, E. A. Litmanovich, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Beilstein J. Org. Chem. 11, 1796 (2015).CrossRefGoogle Scholar
  27. 27.
    Yu. I. Denisova, M. L. Gringol’ts, L. B. Krentsel’, G. A. Shandryuk, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. B 58, 292 (2016).CrossRefGoogle Scholar
  28. 28.
    G. A. Shandryuk, Y. I. Denisova, M. L. Gringolts, L. B. Krentsel, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Eur. Polym. J. 86, 143 (2017).CrossRefGoogle Scholar
  29. 29.
    Yu. I. Denisova, and M. L. Gringol’ts, L. B. Krentsel’, G. A. Shandryuk, A. S. Peregudov, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. B 59, 412 (2017).CrossRefGoogle Scholar
  30. 30.
    M. B. Dinger and J. C. Mol, Eur. J. Inorg. Chem. 2003, 2827 (2003).CrossRefGoogle Scholar
  31. 31.
    K. D. Camm, N. M. Castro, Y. Liu, P. Czechura, J. L. Snelgrove, and D. E. Fogg, J. Am. Chem. Soc. 129, 4168 (2007).CrossRefGoogle Scholar
  32. 32.
    K.-Y. Yoon, K. O. Kim, M. Schaefer, and D. Y. Yoon, Polymer 53, 2290 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. I. Denisova
    • 1
    Email author
  • A. V. Roenko
    • 1
  • M. L. Gringolts
    • 1
  • L. B. Krentsel
    • 1
  • A. S. Peregudov
    • 2
  • G. A. Shandryuk
    • 1
  • E. Sh. Finkelshtein
    • 1
  • Y. V. Kudryavtsev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations