Advertisement

Polymer Science, Series B

, Volume 60, Issue 6, pp 727–734 | Cite as

Radiation-Chemical Reduction of Silver Ions in Polyelectrolyte Matrix‒Carboxymethyl Chitin

  • V. A. AleksandrovaEmail author
  • L. N. Shirokova
Synthesis

Abstract

To study the effect of pH of the medium on the formation of clusters and silver nanoparticles in a polyelectrolyte matrix, 6-O-carboxymethyl chitin was synthesized in three forms: salt, acid, and mixed. It was shown that the sorption ability in relation to silver ions of salt and mixed form is 62%; for the acid form of 6-O-carboxymethyl chitin, a decrease in this index to 58% was noted. The radiation-chemical synthesis of silver nanoparticles from ions at an irradiation dose of 10 kGy in a solution of the salt form of 6-O-carboxymethyl chitin results in the formation of stable, uniform nanoparticles of spherical shape with a size of 0.1–4.5 nm at different degrees of filling of the macromolecule with metal ions. When the mixed form of 6-O-carboxymethyl chitin was used as a matrix, the increase in the size of silver nanoparticles to 10–12 nm was noted by the results of TEM, and the formation of associated silver nanoparticles was recorded for the acid form of 6-O-carboxymethyl chitin.

Keywords

chitin nanoparticles colloids polyelectrolytes nanocomposites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Hasell, J. Yang, W. Wang, P. D. Brown, and S. M. Howdle, Mater. Lett. 61, 4906 (2007).CrossRefGoogle Scholar
  2. 2.
    B. Soroushian, I. Lampre, J. Belloni, and M. Mostafavi, Radiat. Phys. Chem. 72, 111 (2005).CrossRefGoogle Scholar
  3. 3.
    A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Metal Nanocrystals in Polymers (Khimiya, Moscow, 2000) [in Russian].Google Scholar
  4. 4.
    M. V. Kiryukhin, B. M. Sergeev, A. N. Prusov, and V. G. Sergeyev, Polym. Sci., Ser. B 42, 158 (2000).Google Scholar
  5. 5.
    M. Zheng, M. Gu, Y. Jin, and G. Jin, Mater. Res. Bull. 36, 853 (2001).CrossRefGoogle Scholar
  6. 6.
    Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, and Z. Y. Chen, Adv. Mater. 11, 850 (1999).CrossRefGoogle Scholar
  7. 7.
    J. Cai, S. Kimura, M. Wada, and S. Kuga, Biomacromolecules 10, 87 (2009).CrossRefGoogle Scholar
  8. 8.
    H. Huang, Q. Yuan, and X. Yang, Colloids Surf., B 39, 31 (2004).CrossRefGoogle Scholar
  9. 9.
    P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc. 125, 13940 (2003).CrossRefGoogle Scholar
  10. 10.
    S. Honary, K. Ghajar, P. Khazaeli, and P. Shalchian, Trop. J. Pharm. Res. 10, 69 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma, Carbohydr. Res. 344, 2375 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Shameli, M. B. Ahmad, W. M. Z. W. Yunus, N. A. Ibrahim, Y. Gharayebi, and S. Sedaghat, Int. J. Nanomed. 5, 1067 (2010).CrossRefGoogle Scholar
  13. 13.
    Z. Li, Y. Li, X.-F. Qian, J. Yin, and Z.-K. Zhu, Appl. Surf. Sci. 250, 109 (2005).CrossRefGoogle Scholar
  14. 14.
    L. N. Shirokova and V. A. Alexandrova, Dokl. Phys. Chem. 464, 234 (2015).CrossRefGoogle Scholar
  15. 15.
    G. A. Vikhoreva, D. Yu. Gladyshev, M. R. Bazt, V. V. Barkov, and L. S. Gal’braikh, Cellulose Chem. Technol. 26, 234 (1992).Google Scholar
  16. 16.
    V. A. Aleksandrova and L. N. Shirokova, RF Patent No. 2474471, Byull. Izobret., No. 4 (2013).Google Scholar
  17. 17.
    M. Mostafavi, N. Keghouche, and M. O. Delcourt, Chem. Phys. Lett. 169, 81 (1990).CrossRefGoogle Scholar
  18. 18.
    A. B. Zezin, V. B. Rogacheva, S. P. Valueva, N. I. Nikonorova, M. F. Zansokhova, and A. A. Zenin, Ross. Nanotekhnol. 1, 191 (2006).Google Scholar
  19. 19.
    A. A. Tager, Physical Chemistry of Polymers (Nauchnyi mir, Moscow, 2007) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations