Advertisement

Polymer Science, Series B

, Volume 59, Issue 1, pp 97–108 | Cite as

A biocompatible nanocomposite based on allyl chitosan and vinyltriethoxysilane for tissue engineering

  • A. I. Aleksandrov
  • T. A. Akopova
  • V. G. ShevchenkoEmail author
  • G. V. Cherkaev
  • E. N. Degtyarev
  • A. A. Dubinskii
  • V. G. Krasovskii
  • A. I. Prokof’ev
  • S. S. Abramchuk
  • M. I. Buzin
Composites
  • 38 Downloads

Abstract

The synthesis, structure, and electrophysical properties of a polymer-inorganic biocompatible composite based on unsaturated chitosan ether, namely, allyl chitosan, and vinyltriethoxysilane are studied. During composite synthesis, allyl chitosan forms an individual nanophase with vinyltriethoxysilane and its condensation products in the polymer matrix of allyl chitosan. The size of nanoparticles embedded in a polymer matrix increases from 50 to 1000 nm as the fraction of the added vinyltriethoxysilane grows. Under exposure to UV radiation, both homopolycondensation and heteropolycondensation occur in the composite films via crosslinking according to the radical mechanism and the composite becomes insoluble in water. It has been shown that the resulting composites feature ionic conductivity under application of both direct current and high-frequency electric fields to the sample. Conductivity is provided by a proton–electron ensemble that concentrates at the nanoparticle/polymer matrix interface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Schmidt and J. B. Leach, Annu. Rev. Biomed. Eng. 5, 293 (2003).CrossRefGoogle Scholar
  2. 2.
    C. H. Yi and Y. H. Yu, Appl. Basis Commun. 18, 100 (2006).CrossRefGoogle Scholar
  3. 3.
    M. N. Samoilovich, A. F. Belyanin, S. M. Kleshcheva, N. S. Sergeeva, I. K. Sviridova, V. A. Kirsanova, S. A. Akhmedova, V. S. Urusov, and L. V. Shvanskaya, Nano-Mikrosist. Tekh., No. 8, 38 (2008).Google Scholar
  4. 4.
    V. S. Urusov, M. I. Samoilovich, N. S. Sergeeva, A. F. Belyanin, L. V. Shvanskaya, I. K. Sviridova, V. A. Kirsanova, A. Yu. Bychkov, S. A. Akhmedova, and S. M. Kleshcheva, Dokl. Biol. Sci. 423 (1), 473 (2008).CrossRefGoogle Scholar
  5. 5.
    F. Johansson, M. Kanje, S. Eriksson, and L. Wallman, Phys. Status Solidi C, No. 9, 3258 (2005).CrossRefGoogle Scholar
  6. 6.
    B. T. Deleon, R. Oren, M. E. Spira, N. Korbakov, S. Vitzchaik, and A. Saar, Phys. Status Solidi A, No. 8, 1456 (2005).CrossRefGoogle Scholar
  7. 7.
    J. H. Park and G. Luo, Nat. Mater. 8, 331 (2009).CrossRefGoogle Scholar
  8. 8.
    RF Patent No. 2234514 (2000).Google Scholar
  9. 9.
    P. Joshi and R. Chitnis, Sci. J. 2, 1 (2008).Google Scholar
  10. 10.
    C. Silvestru and J. E. Drake, Coord. Chem. Rev. 223, 117 (2001).CrossRefGoogle Scholar
  11. 11.
    A. S. Zhiltsov, K. L. Boldyrev, O. B. Gorbatsevich, V. V. Kazakova, N. V. Demchenko, G. V. Cherkaev, and A. M. Muzafarov, Silicon 7, 165 (2014).CrossRefGoogle Scholar
  12. 12.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, T. V. Laptinskaya, V. S. Papkov, M. I. Buzin, M. N. Il’ina, A. N. Ozerin, and A. M. Muzafarov, J. Polym. Sci., Part A: Polym. Chem. 48, 4310 (2010).CrossRefGoogle Scholar
  13. 13.
    T. A. Akopova, P. S. Timashev, T. S. Demina, K. N. Bardakova, N. V. Minaev, V. F. Burdukovskii, G. V. Cherkaev, L. V. Vladimirov, A. V. Istomin, E. A. Svidchenko, N. M. Surin, and V. N. Bagratashvili, Mendeleev Commun. 25, 280 (2015).CrossRefGoogle Scholar
  14. 14.
    K. A. Andrianov, in Elementoorganic Chemistry Methods. Silicon (Nauka, Moscow, 1967), p. 569 [in Russian].Google Scholar
  15. 15.
    F. D. Osterholtz and R. L. Pohl, J. Adhes. Sci. Technol. 6 (1), 127 (1992).CrossRefGoogle Scholar
  16. 16.
    G. L. Simionatto and C. E. T. Gomes, Thermochim. Acta 444, 128 (2006).CrossRefGoogle Scholar
  17. 17.
    A. P. Martinez-Camacho, M. O. Cortez-Rocha, J. M. Ezquerra-Brauer, A. Z. Graciano-Verdugo, F. Rodriguez-Felix, M. M. Castillo-Ortega, M. S. Yupiz-Gymez, and M. Plascencia-Jatomea, Carbohydr. Polym. 82, 310 (2010).CrossRefGoogle Scholar
  18. 18.
    E. Pretch, E. Bullmann, and E. Affolter, Structure Determination of Organic Compounds (Springer, Berlin, 2000).CrossRefGoogle Scholar
  19. 19.
    D. Becker, S. Swarts, and D. M. Sevilla, J. Phys. Chem. 89, 2638 (1980).CrossRefGoogle Scholar
  20. 20.
    R. Dorati, C. Colonna, C. Tomasi, I. Genta, T. Modena, A. Fancitano, A. Bultafara, B. Conti, and J. C. Dyre, J. Appl. Phys. 64 (5), 2456 (1998).Google Scholar
  21. 21.
    J. E. Wertz and J. R. Bolton, Electron Spin Rezonance (McGraw-Hill Book Comp., New York, 1972).Google Scholar
  22. 22.
    J. C. Dyre, J. Appl. Phys. 64 (5), 2456 (1998).CrossRefGoogle Scholar
  23. 23.
    G. M. Tsangaris, G. C. Psarras, and E. Manolakaki, Adv. Compos. Letts. 8 (1), 25 (1999).CrossRefGoogle Scholar
  24. 24.
    A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. I. Aleksandrov
    • 1
  • T. A. Akopova
    • 1
  • V. G. Shevchenko
    • 1
    Email author
  • G. V. Cherkaev
    • 1
  • E. N. Degtyarev
    • 2
  • A. A. Dubinskii
    • 2
  • V. G. Krasovskii
    • 3
  • A. I. Prokof’ev
    • 4
  • S. S. Abramchuk
    • 4
  • M. I. Buzin
    • 4
  1. 1.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations