Polymer Science Series B

, Volume 58, Issue 6, pp 759–768 | Cite as

A comparison of modifications induced by Li3+ and Ag8+ ion beams irradiation in poly(lactide-co-glycolide) films

Polymer Destruction


Poly(lactide-co-glycolide) (PLGA) films were irradiated by 180 MeV/amu Ag8+ ions and 50 MeV/amu Li3+ ions at different fluences of 5 × 1010, 5 × 1011 and 1 × 1012 ions/cm2. Modifications of polymer films induced by the swift heavy ions (SHI) irradiation were studied by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy. The dominant effect of the SHI beam irradiation is proposed to be chain scission which leads to breakage of polymer chains, followed by hydrogen abstraction. The results from FTIR spectroscopy showed that the intensity of all peaks of the irradiated samples decreased at high fluence of SHI, suggesting PLGA samples significantly degraded at high SHI fluence. The variation in optical band gap energy and Urbach energy with increasing fluence was calculated from UV–Vis spectroscopy and explained in terms of changes occurring in the polymer matrix. X-ray diffraction patterns also show appreciable changes in PLGA at high fluence. FESEM results revealed that the hydrophilicity of the PLGA surface increased with an increase in ion fluence. In this paper the optical, chemical and structural changes with different fluence rates are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Cohn, H. Younes, and G. Marom, Polymer 28, 2018 (1987).CrossRefGoogle Scholar
  2. 2.
    N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang, Annu. Rev. Biomed. Eng. 2, 9 (2000).CrossRefGoogle Scholar
  3. 3.
    F. A. Barber, Orthopedics, Spec. Ed. 4, 1111 (1998).Google Scholar
  4. 4.
    P. Gunatillake, R. Mayadunne, and R. Adhikari, Biotechnol Annu. Rev. 12, 301 (2006).CrossRefGoogle Scholar
  5. 5.
    R. A. Miller, J. M. Brady, and D. E. Cutright, J. Biomed. Mater. Res. 11, 711 (1977).CrossRefGoogle Scholar
  6. 6.
    P. Perugini, I. Genta, B. Conti, T. Modena, and F. Pavanetto, AAPS PharmSciTech 2 (3), 10 (2001).CrossRefGoogle Scholar
  7. 7.
    M. J. Blanco-Prieto, E. Fattal, A. Gulik, J. C. Dedieu, B. P. Roques, and P. J. Couvreur, J. Controlled Release 43, 81 (1997).CrossRefGoogle Scholar
  8. 8.
    K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer, Pharm. Res. 17, 100 (2000).CrossRefGoogle Scholar
  9. 9.
    L. Wang, C. S. Chaw, Y. Y. Yang, S. M. Moochhala, B. Zhao, S. Ng, and J. Heller, Biomaterials 25, 3275 (2004).CrossRefGoogle Scholar
  10. 10.
    K. Hirenkumar, K. Makadia, and J. Steven, Polymers 3, 1377 (2011).CrossRefGoogle Scholar
  11. 11.
    M. L. Houchin and E. M. Topp, J. Appl. Polym. Sci. 114, 2848 (2009).CrossRefGoogle Scholar
  12. 12.
    G. K. Mehta, PINSA-A: Proc. Indian Natl. Sci. Acad., Part A 66, 653 (2000).Google Scholar
  13. 13.
    A. Chapiro, Radiation Chemistry of Polymeric Systems (Interscience, London, 1962), p. 353.Google Scholar
  14. 14.
    A. Charlesby, Radiation Chemistry Principles and Applications (VCH, New York, 1987), p. 451.Google Scholar
  15. 15.
    T. Kelen, Oxidative Degradation. Polymer Degradation (VNR, New York, 1983), pp. 107–136.Google Scholar
  16. 16.
    L. Montanari, F. Cilurzo, L. Valvo, A. Faucitano, A. Buttafava, A. Groppo, I. Genta, and B. Conti, J. Controlled Release 75, 317(2001).CrossRefGoogle Scholar
  17. 17.
    S. C. J. Loo, C. P. Ooi, and Y. C. F Boey, Biomaterials 26, 3809 (2005).Google Scholar
  18. 18.
    K. P. Schmitz, D. Behrend, K. Sternberg, N. Grabow, D. P. Martin, and S. F. Williams, US Patent No. US7618448 B2 (2009).Google Scholar
  19. 19.
    N. F. Mott and E. A. Davies, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979).Google Scholar
  20. 20.
    J. Tauc, Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974).CrossRefGoogle Scholar
  21. 21.
    F. Urbach, Phys. Rev. 92, 1324 (1953).CrossRefGoogle Scholar
  22. 22.
    V. Kulshrestha, G. Agarwal, K. Awasthi, B. Tripathi, N. K. Acharya, D. Vyas, V. K. Saraswat, Y. K. Vijay, and I. P. Jain, Micron 41, 390 (2010).CrossRefGoogle Scholar
  23. 23.
    Encyclopedia of Polymer Science and Engineering, 2nd ed., Ed. By H. F. Mark, N. M. Bikales, and C. G. Overberger (Willey, New York, 1986), Vol. 4, p. 418.Google Scholar
  24. 24.
    L. H. Sperling, An Introduction to Physical Polymer Science, 3rd ed. (John Wiley and Sons, Inc., Hoboken; New Jersey, 2001).Google Scholar
  25. 25.
    R. F. Bradly, Comprehensive Desk Reference of Polymer Characterization and Analysis (Am. Chem. Soc., Washington, D.C., 2003).Google Scholar
  26. 26.
    R. Kumar, R. Prasad, and Y. K. Vijay, Nucl. Instrum. Methods Phys. Res., Sect. B 212, 221 (2003).CrossRefGoogle Scholar
  27. 27.
    H. P. Klug and L. E. Alexander, X-Ray Spectroscopic (John Wiley & Sons, New York, 1974), p. 960.Google Scholar
  28. 28.
    M. Kaur, S. Singh, and R. Mehta, Polym. Sci., Ser. B 56, 657 (2014).CrossRefGoogle Scholar
  29. 29.
    S. C. J. Loo, C. P. Ooi, and Y. C. F Boey, Polym. Degrad. Stab. 83, 259 (2004).CrossRefGoogle Scholar
  30. 30.
    K. G. M. Derelio and G. Deniz, Turk. J. Chem. 23, 153 (1999).Google Scholar
  31. 31.
    T. H. Yang, A. Dong, J. Meyer, O. Johnson, J. Cleland, and J. Carpenter, J. Pharm. Sci. 88, 161 (2000).CrossRefGoogle Scholar
  32. 32.
    S. C. J. Loo, C. P. Ooi, and Y. C. F Boey, Biomaterials 26, 1359 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of PhysicsGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of Chemical EngineeringThapar UniversityPatialaIndia

Personalised recommendations