Advertisement

Polymer Science Series B

, Volume 58, Issue 3, pp 235–270 | Cite as

Organosilicon compounds in supercritical carbon dioxide: Synthesis, polymerization, modification, and production of new materials

  • M. A. Pigaleva
  • I. V. Elmanovich
  • M. N. Temnikov
  • M. O. GallyamovEmail author
  • A. M. Muzafarov
Review

Abstract

The main promising opportunities for the advantageous combination of organosilicon compounds and supercritical carbon dioxide both as a solvent and as a reagent in chemical processes are analyzed. The main processes of polymerization and modification of polymer matrices that are performed in supercritical СО2 with the use of organosilicon materials of various types are outlined. Methods for the obtaining organosilicon polymers and polymer-inorganic composites and methods for the application of siloxane stabilizers in the dispersion polymerization of monomers in supercritical СО2 are described. Studies of the insertion of a СО2 molecule into Si–H, Si–N, and Si–O–Me bonds in reactions that feature exceptionally high chemical selectivity and afford a wide spectrum of products potentially useful for application in the chemistry of polymer materials are considered. It is shown that the silylation of surfaces of various types and morphologies in the medium of supercritical СО2 is a rapidly developing green approach that makes it possible to obtain highly uniform defect-free coatings with variable desired functionality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Muzafarov, A. V. Bystrova, N. G. Vasilenko, and G. M. Ignat’eva, Russ. Chem. Rev. 82 7, 635 (2013).CrossRefGoogle Scholar
  2. 2.
    E. E. Said-Galiev, Y. S. Vygodskii, L. N. Nikitin, R. A. Vinokur, M. O. Gallyamov, and A. R. Khokhlov, Polym. Sci., Ser. B 43 (7–8), 227 (2001).Google Scholar
  3. 3.
    M. O. Gallyamov, R. A. Vinokur, L. N. Nikitin, E. E. Said-Galiyev, A. R. Khokhlov, and K. Schaumburg, Polym. Sci., Ser. A 44 6, 581 (2002).Google Scholar
  4. 4.
    L. N. Nikitin, M. O. Gallyamov, A. Yu. Nikolaev, E. E. Said-Galiyev, A. R. Khokhlov, S. S. Bukalov, G. I. Magdanurov, V. V. Volkov, E. V. Shtykova, K. A. Dembo, and G. K. Elyashevich, Polym. Sci., Ser. A 48 8, 827 (2006).CrossRefGoogle Scholar
  5. 5.
    T. E. Grigor’ev, E. E. Said-Galiev, A. Yu. Nikolaev, M. S. Kondratenko, I. V. Elmanovich, M. O. Gallyamov, and A. R. Khokhlov, Nanotechnol. Russ. 6 (5–6), 311 (2011).CrossRefGoogle Scholar
  6. 6.
    M. A. Pigaleva, M. V. Bulat, G. N. Bondarenko, S. S.Abramchuk, T. V. Laptinskaya, M. O. Gallyamov, I. P. Beletskaya, and M. Möller, ACS Macro Lett. 4 7, 661 (2015).CrossRefGoogle Scholar
  7. 7.
    M. O. Gallyamov, V. M. Buznik, A. K. Tsvetnikov, R. A. Vinokur, L. N. Nikitin, E. E. Said-Galiev, O. V. Lebedeva, A. R. Khokhlov, and K. Schaumburg, Dokl. Phys. Chem. 392 (1–3), 217 (2003).CrossRefGoogle Scholar
  8. 8.
    D. O. Kolomytkin, I. V. Elmanovich, S. S. Abramchuk, L. A. Tsarkova, D. Pospiech, M. Möller, M. O. Gallyamov, and A. R. Khokhlov, Eur. Polym. J. 71, 73 (2015).CrossRefGoogle Scholar
  9. 9.
    M. O. Gallyamov, V. M. Buznik, A. K. Tsvetnikov, R. A. Vinokur, L. N. Nikitin, E. E. Said-Galiev, A. R. Khokhlov, and K. Schaumburg, Khim. Fiz. 23 6, 76 (2004).Google Scholar
  10. 10.
    D. O. Kolomytkin, M. O. Gallyamov, and A. R. Khokhlov, Russ. J. Phys. Chem. B 5 7, 1106 (2011).CrossRefGoogle Scholar
  11. 11.
    M. O. Gallyamov, I. S. Chaschin, M. A. Khokhlova, T. E. Grigorev, N. P. Bakuleva, I. G. Lyutova, J. E. Kondratenko, G. A. Badun, M. G. Chernysheva, and A. R. Khokhlov, Mater. Sci. Eng., C 37, 127 (2014).CrossRefGoogle Scholar
  12. 12.
    M. O. Gallyamov, A. Mourran, B. Tartsch, R. A. Vinokur, L. N. Nikitin, A. R. Khokhlov, K. Schaumburg, and M. Möller, Phys. Chem. Chem. Phys. 8 22, 2642 (2006).CrossRefGoogle Scholar
  13. 13.
    N. A. Shumilkina, V. D. Myakushev, E. A. Tatarinova, M. I. Buzin, N. V. Voronina, T. V. Laptinskaya, M. O. Gallyamov, A. R. Khokhlov, and A. M. Muzafarov, Polym. Sci., Ser. A 48 12, 1240 (2006).CrossRefGoogle Scholar
  14. 14.
    L. N. Nikitin, M. O. Gallyamov, E. E. Said-Galiev, A. R. Khokhlov, and V. M. Buznik, Russ. J. Gen. Chem. 79 3, 578 (2009).CrossRefGoogle Scholar
  15. 15.
    G. D. Wignall, J. Phys.: Condens. Matter 11 (15), R157 (1999).Google Scholar
  16. 16.
    A. A. Kalinina, I. V. Elmanovich, M. N. Temnikov, M. A. Pigaleva, A. S. Zhiltsov, M. O. Gallyamov, and A. M. Muzafarov, RSC Adv. 5 8, 5664 (2015).CrossRefGoogle Scholar
  17. 17.
    I. Yilgor and J. E. McGrath, Polym. Bull. 506, 499 (1984).CrossRefGoogle Scholar
  18. 18.
    K. T. Lim and S. E. Webber, Macromolecules 32 9, 2811 (1999).CrossRefGoogle Scholar
  19. 19.
    J. L. Gurav, I.-K. Jung, H.-H. Park, E. S. Kang, and D. Y. Nadargi, J. Nanomater. 2010, 1 (2010).CrossRefGoogle Scholar
  20. 20.
    D. A. Loy, E. M. Russick, S. A. Yamanaka, B. M. Baugher, and K. J. Shea, Chem. Mater. 9 11, 2264 (1997).CrossRefGoogle Scholar
  21. 21.
    J. W. Green, M. J. Rubal, B. M. Osman, R. L. Welsch, E. Patrick, J. W. Fitch, and M. T. Blanda, Polym. Adv. Technol. 825, 820 (2000).CrossRefGoogle Scholar
  22. 22.
    R. Zhu, T. Hoshi, Y. Muroga, T. Hagiwara, S. Yano, and T. Sawaguchi, J. Appl. Polym. Sci. 127 5, 3388 (2013).CrossRefGoogle Scholar
  23. 23.
    P. A. Charpentier, W. Z. Xu, and X. Li, Green Chem. 9 7, 768 (2007).CrossRefGoogle Scholar
  24. 24.
    J. Yang, Y. Sang, F. Chen, Z. Fei, and M. Zhong, J. Supercrit. Fluids 62, 197 (2012).CrossRefGoogle Scholar
  25. 25.
    P. López-Aranguren, J. Fraile, L. F. Vega, and C. Domingo, J. Supercrit. Fluids 85, 68 (2014).CrossRefGoogle Scholar
  26. 26.
    R. Jiang, H. R. Kunz, and J. M. Fenton, J. Membr. Sci. 272 (1–2), 116 (2006).CrossRefGoogle Scholar
  27. 27.
    L. Su, S. Pei, L. Li, H. Li, Y. Zhang, W. Yu, and C. Zhou, Int. J. Hydrogen Energy 34 16, 6892 (2009).CrossRefGoogle Scholar
  28. 28.
    L. Su, L. Li, H. Li, J. Tang, Y. Zhang, W. Yu, and C. Zhou, J. Power Sources 194 1, 220 (2009).CrossRefGoogle Scholar
  29. 29.
    D. A. Canelas and J. M. DeSimone, Adv. Polym. Sci. 133, 103 (1997).CrossRefGoogle Scholar
  30. 30.
    J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, Chem. Rev. 199, 9 (2000).Google Scholar
  31. 31.
    C. Boyère, C. Jérôme, and A. Debuigne, Eur. Polym. J. 61, 45 (2014).CrossRefGoogle Scholar
  32. 32.
    J. M. DeSimone, E. E. Maury, Y. Z. Menceloglu, J. B. McClain, T. J. Romack, and J. R. Combes, Science 265, 356 (1994).CrossRefGoogle Scholar
  33. 33.
    K. A. Shaffer, T. A. Jones, D. A. Canelas, and J. M. DeSimone, Macromolecules 29, 2704 (1996).CrossRefGoogle Scholar
  34. 34.
    M. L. O’ Neill, M. Z. Yates, K. P. Johnston, C. D. Smith, and S. P. Wilkinson, Macromolecules 9297 97, 2838 (1998).CrossRefGoogle Scholar
  35. 35.
    M. L. O. O’Neill, M. Z. Yates, K. P. Johnston, C. D. Smith, and S. P. Wilkinson, Macromolecules 9297 97, 2848 (1998).CrossRefGoogle Scholar
  36. 36.
    P. A. Mueller, G. Storti, M. Morbidelli, C. A. Mantelis, and T. Meyer, Macromol. Symp. 259 1, 218 (2007).CrossRefGoogle Scholar
  37. 37.
    K. S. Oh, W. Bae, and H. Kim, Eur. Polym. J. 44 2, 415 (2008).CrossRefGoogle Scholar
  38. 38.
    Y. Haldorai, T. Zong, and J. Shim, J. Appl. Polym. Sci. 123, 1176 (2011).CrossRefGoogle Scholar
  39. 39.
    K. S. Oh, W. Bae, and H. Kim, Eur. Polym. J. 44 2, 415 (2008).CrossRefGoogle Scholar
  40. 40.
    R. Wang and H. M. Cheung, J. Appl. Polym. Sci. 93 2, 545 (2004).CrossRefGoogle Scholar
  41. 41.
    S. Kwon, K. Lee, H. Kim, Y.-W. Lee, and W. Bae, Colloid Polym. Sci. 286 10, 1181 (2008).CrossRefGoogle Scholar
  42. 42.
    S. Kwon, K. Lee, W. Bae, and H. Kim, J. Supercrit. Fluids 45 3, 391 (2008).CrossRefGoogle Scholar
  43. 43.
    A. Galia, A. Giaconia, V. Iaia, and G. Filardo, J. Polym. Sci., Part A: Polym. Chem. 42 1, 173 (2004).CrossRefGoogle Scholar
  44. 44.
    J. Shin, D. W. Cho, W. Bae, and H. Kim, Korean J. Chem. Eng. 27 5, 1613 (2010).CrossRefGoogle Scholar
  45. 45.
    H. S. Ganapathy, H. S. Hwang, Y. T. Jeong, W.-K. Lee, and K. T. Lim, Eur. Polym. J. 43 1, 119 (2007).CrossRefGoogle Scholar
  46. 46.
    Y. A. Hussain, T. Liu, and G. W. Roberts, Ind. Eng. Chem. Res. 51, 11401 (2012).CrossRefGoogle Scholar
  47. 47.
    B. Renault, T. Tassaing, E. Cloutet, and H. Cramail, J. Polym. Sci., Part A: Polym. Chem. 45 23, 5649 (2007).CrossRefGoogle Scholar
  48. 48.
    M. Akgun, S. Deniz, N. Baran, N. I. Uzun, N. A. Akgun, and S. Dincer, Polym. Int. 54 2, 374 (2005).CrossRefGoogle Scholar
  49. 49.
    L. Cao, L. Chen, P. Cui, and J. Wang, J. Appl. Polym. Sci. 108, 3843 (2008).CrossRefGoogle Scholar
  50. 50.
    K. R. Aguiar, V. G. Santos, M. N. Eberlin, K. Rischka, M. Noeske, G. Tremiliosi-Filho, and U. P. Rodrigues-Filho, RSC Adv. 4 46, 24334 (2014).CrossRefGoogle Scholar
  51. 51.
    A. Tlili, E. Blondiaux, X. Frogneux, and Th. Cantat, Green Chem. 17, 157 (2015).CrossRefGoogle Scholar
  52. 52.
    L. Wu, Q. Liu, R. Jackstell, and M. Beller, Top. Organomet. Chem. 53, 279 (2015).Google Scholar
  53. 53.
    Ch. Maeda, Y. Miyazaki, and T. Ema, Catal. Sci. Technol. 4, 1482 (2014).CrossRefGoogle Scholar
  54. 54.
    F. J. Fernández-Alvarez, A. M. Aitanib, and L. A. Oro, Catal. Sci. Technol 4, 611 (2014).CrossRefGoogle Scholar
  55. 55.
    G. Süss-Fink and J. Reiner, J. Organomet. Chem. 221, C36 (1981).CrossRefGoogle Scholar
  56. 56.
    H. Koinuma, F. Kawakami, H. Kato, and H. Hirai, J. Chem. Soc., Chem. Commun. 1981, 213 (1981).CrossRefGoogle Scholar
  57. 57.
    Th. C. Eisenschmid and R. Eisenberg, Organometallics 8, 1822 (1989).CrossRefGoogle Scholar
  58. 58.
    P. G. Jessop, Top. Catal. 5, 95 (1998).CrossRefGoogle Scholar
  59. 59.
    P. G. Jessop, T. Ikariya, and R. Noyori, Chem. Rev. 99, 475 (1999).CrossRefGoogle Scholar
  60. 60.
    A. Jansen, H. Görls, and S. Pitter, Organometallics 19, 135 (2000).CrossRefGoogle Scholar
  61. 61.
    A. Jansen and S. Pitter, J. Mol. Catal. A: Chem. 217, 41 (2004).CrossRefGoogle Scholar
  62. 62.
    P. Deglmann, E. Ember, P. Hofmann, S. Pitter, and O. Walter, Chem.–Eur. J. 13, 2864 (2007).CrossRefGoogle Scholar
  63. 63.
    R. Lalrempuia, M. Iglesias, V. Polo, Miguel P. J. Sanz, F. J. Fernández-Alvarez, J. J. Pérez-Torrente, and L. A. Oro, Angew. Chem., Int. Ed. 51, 12824 (2012).CrossRefGoogle Scholar
  64. 64.
    E. A. Jaseer, M. N. Akhtar, M. Osman, A. Al-Shammari, H. B. Oladipo, K. Garcés, F. J. Fernández-Alvarez, S. Al-Khattaf, and L. A. Oro, Catal. Sci. Technol. 5, 274 (2015).CrossRefGoogle Scholar
  65. 65.
    S. Park, D. Bézier, and M. Brookhart, J. Am. Chem. Soc. 134, 11404 (2012).CrossRefGoogle Scholar
  66. 66.
    F. J. Fernández-Alvarez, M. Iglesias, L. A. Oro, and V. Polo, ChemCatChem 5, 3481 (2013).CrossRefGoogle Scholar
  67. 67.
    S. J. Mitton and L. Turculet, Chem.–Eur. J. 18, 15258 (2012).CrossRefGoogle Scholar
  68. 68.
    Sh. Itagaki, K. Yamaguchi, and N. Mizuno, J. Mol. Catal. A: Chem. 366, 347 (2013).CrossRefGoogle Scholar
  69. 69.
    Y. Li, X. Fang, K. Junge, and M. Beller, Angew. Chem., Int. Ed. 52, 9568 (2013).CrossRefGoogle Scholar
  70. 70.
    T. T. Metsänen and M. Oestreich, Organometallics 34, 543 (2015).CrossRefGoogle Scholar
  71. 71.
    Th. V. Q. Nguyen, W.-J. Yoo, and Sh. Kobayashi, Angew. Chem. 127, 9341 (2015).CrossRefGoogle Scholar
  72. 72.
    V. P. Taori, R. Bandari, and M. R. Buchmeiser, Chem.–Eur. J. 20, 3292 (2014).CrossRefGoogle Scholar
  73. 73.
    T. Matsuo and H. Kawaguchi, J. Am. Chem. Soc. 128, 12362 (2006).CrossRefGoogle Scholar
  74. 74.
    T. Fujihara, T. Xu, K. Semba, J. Terao, and Y. Tsuji, Angew. Chem., Int. Ed. 50, 523 (2011).CrossRefGoogle Scholar
  75. 75.
    K. Motokura, D. Kashiwame, A. Miyaji, and T. Baba, Org. Lett. 14 10, 2642 (2012).CrossRefGoogle Scholar
  76. 76.
    K. Motokura, D. Kashiwame, N. Takahashi, A. Miyaji, and T. Baba, Chem.–Eur. J. 19, 10030 (2013).CrossRefGoogle Scholar
  77. 77.
    K. Motokura, N. Takahashi, A. Miyaji, Y. Sakamoto, Sh. Yamaguchi, and T. Baba, Tetrahedron 70, 6951 (2014).CrossRefGoogle Scholar
  78. 78.
    W. Sattler and G. Parkin, J. Am. Chem. Soc. 134, 17462 (2012).CrossRefGoogle Scholar
  79. 79.
    O. Jacquet, X. Frogneux, Ch. Das Neves Gomes, and Th. Cantat, Chem. Sci. 4, 2127 (2013).CrossRefGoogle Scholar
  80. 80.
    L. Zhang, J. Cheng, and Zh. Hou, Chem. Commun. 49, 4782 (2013).CrossRefGoogle Scholar
  81. 81.
    A. Berkefeld, W. E. Piers, M. Parvez, L. Castro, L. Maron, and O. Eisenstein, Chem. Sci. 4, 2152 (2013).CrossRefGoogle Scholar
  82. 82.
    F. A. LeBlanc, W. E. Piers, and M. Parvez, Angew. Chem., Int. Ed. 53, 789 (2014).CrossRefGoogle Scholar
  83. 83.
    Y. Jiang, O. Blacque, Th. Fox, and H. Berke, J. Am. Chem. Soc. 135, 7751 (2013).CrossRefGoogle Scholar
  84. 84.
    L. González-Sebastián, M. Flores-Alamo, and J. J. Garcia, Organometallics 32, 7186 (2013).CrossRefGoogle Scholar
  85. 85.
    L. González-Sebastián, M. Flores-Alamo, and J. J. Garcia, Organometallics 34, 763 (2015).CrossRefGoogle Scholar
  86. 86.
    X. Frogneux, O. Jacquet, and Th. Cantat, Catal. Sci. Technol. 4, 1529 (2014).CrossRefGoogle Scholar
  87. 87.
    M. L. Scheuermann, S. P. Semproni, I. Pappas, and P. J. Chirik, Inorg. Chem. 53, 9463 (2014).CrossRefGoogle Scholar
  88. 88.
    Zh.-Zh. Yang, B. Yu, H. Zhang, Y. Zhao, G. Ji, and Zh. Liu, RSC Adv. 5, 19613 (2015).CrossRefGoogle Scholar
  89. 89.
    M. M. Deshmukh and Sh. Sakaki, Inorg. Chem. 53, 8485 (2014).CrossRefGoogle Scholar
  90. 90.
    S. A. Milenin, A. A. Kalinina, N. V. Demchenko, N. G. Vasilenko, and A. M. Muzafarov, Russ. Chem. Bull. 62 3, 705 (2013).CrossRefGoogle Scholar
  91. 91.
    Y. Tani, K. Kuga, T. Fujihara, J. Terao, and Y. Tsuji, Chem. Commun. 51, 13020 (2015).CrossRefGoogle Scholar
  92. 92.
    T. Fan, F. K. Sheong, and Zh. Lin, Organometallics 32, 5224 (2013).CrossRefGoogle Scholar
  93. 93.
    T. Mita, Y. Higuchi, and Y. Sato, Org. Lett. 16, 14 (2014).CrossRefGoogle Scholar
  94. 94.
    Y. Takada, S. W. Foo, Y. Yamazakia, and S. Saito, RSC Adv. 4, 50851 (2014).CrossRefGoogle Scholar
  95. 95.
    M. Khandelwal and R. J. Wehmschulte, Angew. Chem., Int. Ed. 51, 7323 (2012).CrossRefGoogle Scholar
  96. 96.
    Zh. Yang, B. Yu, H. Zhang, Y. Zhao, G. Ji, Zh. Ma, X. Gao, and Zh. Liu, Green Chem. 17, 4189 (2015).CrossRefGoogle Scholar
  97. 97.
    Zh. Lu, H. Hausmann, S. Becker, and H. A. Wegner, J. Am. Chem. Soc. 137, 5332 (2015).CrossRefGoogle Scholar
  98. 98.
    A. Berkefeld, W. E. Piers, and M. Parvez, J. Am. Chem. Soc. 132, 10660 (2010).CrossRefGoogle Scholar
  99. 99.
    P. Arya, J. Boyer, R. J. P. Corriu, G. F. Lanneau, and M. Perrot, J. Organomet. Chem. 346, C11 (1988).CrossRefGoogle Scholar
  100. 100.
    Neves. Das, Ch. Gomes, O. Jacquet, C. Villiers, P. Thuéry, M. Ephritikhine, and Th. Cantat, Angew. Chem., Int. Ed. 51, 187 (2012).CrossRefGoogle Scholar
  101. 101.
    X. Gao, B. Yu, Y. Zhao, L. Hao, and Zh. Liu, RSC Adv. 4, 56957 (2014).CrossRefGoogle Scholar
  102. 102.
    M.-A. Courtemanche, M.-A. Légaré, É. Rochette, and F.-G. Fontaine, Chem. Commun. 51, 6858 (2015).CrossRefGoogle Scholar
  103. 103.
    S. N. Riduan, Y. Zhang, and J. Y. Ying, Angew. Chem., Int. Ed. 48, 3322 (2009).CrossRefGoogle Scholar
  104. 104.
    S. N. Riduan and Y. Zhang, Dalton Trans. 39, 3347 (2010).CrossRefGoogle Scholar
  105. 105.
    S. N. Riduan, J. Y. Ying, and Y. Zhang, Chem-CatChem 5, 1490 (2013).Google Scholar
  106. 106.
    F. Huang, G. Lu, L. Zhao, H. Li, and Zh.-X. Wang, J. Am. Chem. Soc. 132, 12388 (2010).CrossRefGoogle Scholar
  107. 107.
    Q. Zhou and Y. Li, J. Am. Chem. Soc. 137 32, 10182 (2015).CrossRefGoogle Scholar
  108. 108.
    O. Jacquet, Ch. Das Neves Gomes, M. Ephritikhine, and Th. Cantat, J. Am. Chem. Soc. 134, 2934 (2012).CrossRefGoogle Scholar
  109. 109.
    O. Jacquet, Ch. Das Neves Gomes, M. Ephritikhine, and Th. Cantat, ChemCatChem 5, 117 (2013).CrossRefGoogle Scholar
  110. 110.
    B. Wang and Z. Cao, RSC Adv. 3, 14007 (2013).CrossRefGoogle Scholar
  111. 111.
    Sh. Das, F. D. Bobbink, G. Laurenczy, and P. J. Dyson, Angew. Chem., Int. Ed. 53, 12876 (2014).CrossRefGoogle Scholar
  112. 112.
    X. Frogneux, E. Blondiaux, P. Thuéry, and Th. Cantat, ACS Catal. 5, 3983 (2015).CrossRefGoogle Scholar
  113. 113.
    J. Chojnowski, S. Rubinsztajn, W. Fortuniak, and J. Kurjata, Macromolecules 41, 7352 (2008).CrossRefGoogle Scholar
  114. 114.
    D. B. Thompson and M. A. Brook, J. Am. Chem. Soc. 130 1, 32 (2008).CrossRefGoogle Scholar
  115. 115.
    M. A. Brook, J. B. Grande, and F. Ganachaud, Adv. Polym. Sci. 235, 161 (2010).CrossRefGoogle Scholar
  116. 116.
    J. B. Grande, T. Urlich, T. Dickie, and M. A. Brook, Polym. Chem. 5, 6728 (2014).CrossRefGoogle Scholar
  117. 117.
    V. D. Sheludyakov, V. P. Kozyukov, and V. F. Mironov, Russ. Chem. Rev. 45 3, 227 (1976).CrossRefGoogle Scholar
  118. 118.
    D. B. Dell’Amico, F. Calderazzo, L. Labella, F. Marchetti, and G. Pampaloni, Chem. Rev. 103, 3857 (2003).CrossRefGoogle Scholar
  119. 119.
    K. Kraushaar, D. Schmidt, A. Schwarzer, and E. Kroke, Adv. Inorg. Chem. 66, 117 (2014).CrossRefGoogle Scholar
  120. 120.
    H. Breederveld, Recl. Trav. Chim. Pays-Bas 81, 276 (1962).CrossRefGoogle Scholar
  121. 121.
    G. Oertel, H. Malz, and H. Holtschmidt, Chem. Ber. 97 3, 891 (1964).CrossRefGoogle Scholar
  122. 122.
    R. H. Cragg and M. F. Lappert, J. Chem. Soc. A 1966, 82 (1966).CrossRefGoogle Scholar
  123. 123.
    E. A. V. Ebsworth, G. Rocktäschel, and J. C. Thompson, J. Chem. Soc. A, 362 (1967).Google Scholar
  124. 124.
    C. Glidewell and D. W. H. Rankin, J. Chem. Soc. A 1970, 279 (1970).CrossRefGoogle Scholar
  125. 125.
    H. R. Kricheldorf, Synthesis 1970, 259 (1970).CrossRefGoogle Scholar
  126. 126.
    C. H. Yoder, A. Komoriya, J. E. Kochanowski, and F. H. Suydam, J. Am. Chem. Soc. 93 24, 6515 (1971).CrossRefGoogle Scholar
  127. 127.
    L. K. Peterson and K. I. Thé, Can. J. Chem. 50, 562 (1972).CrossRefGoogle Scholar
  128. 128.
    V. F. Mironov, V. D. Sheludyakov, and E. S. Rodionov, Zh. Obshch. Khim. 43 11, 2573 (1973).Google Scholar
  129. 129.
    L. Birkofer and P. Sommer, J. Organomet. Chem. 99, C1 (1975).CrossRefGoogle Scholar
  130. 130.
    Ch. Bessenbacher, W. Kaim, and Th. Stahl, Chem. Ber. 122, 933 (1989).CrossRefGoogle Scholar
  131. 131.
    A. Ehlend, H.-D. Hausen, W. Kaim, A. Lichtblau, and W. Schwarz, J. Organomet. Chem. 501, 283 (1995).CrossRefGoogle Scholar
  132. 132.
    D. Walther, P. Gebhardt, R. Fischer, U. Kreher, and H. Görls, Inorg. Chim. Acta 281, 181 (1998).CrossRefGoogle Scholar
  133. 133.
    V. D. Sheludyakov, A. D. Kirilin, and V. F. Mironov, Zh. Obshch. Khim. 45 2, 479 (1975).Google Scholar
  134. 134.
    V. D. Sheludyakov, A. D. Kirilin, and V. F. Mironov, Zh. Obshch. Khim. 45 3, 707 (1975).Google Scholar
  135. 135.
    V. D. Sheludyakov, A. D. Kirilin, A. I. Gusev, V. A. Sharapov, and V. F. Mironov, Zh. Obshch. Khim. 46 12, 2712 (1976).Google Scholar
  136. 136.
    V. D. Sheludyakov, E. S. Rodionov, A. D. Kirilin, and V. F. Mironov, Zh. Obshch. Khim. 46 10, 2265 (1976).Google Scholar
  137. 137.
    V. D. Sheludyakov, A. D. Kirilin, and V. F. Mironov, Zh. Obshch. Khim. 47 7, 1515 (1977).Google Scholar
  138. 138.
    D. Knausz, Zs. Kolos, J. Rohonczy, and K. Ujszászy, Acta Chim. Hung. 120 2, 167 (1985).Google Scholar
  139. 139.
    R. J. P. Corriu, G. F. Lanneau, and V. D. Mehta, J. Organomet. Chem. 419, 9 (1991).CrossRefGoogle Scholar
  140. 140.
    L. Párkányi, Zs. Kolos, and D. Knausz, Z. Kristallogr. 211, 861 (1996).Google Scholar
  141. 141.
    A. V. Lebedev, A. B. Lebedeva, V. D. Sheludyakov, S. N. Ovcharuk, E. A. Kovaleva, and O. L. Ustinova, Russ. J. Gen. Chem. 76 3, 469 (2006).CrossRefGoogle Scholar
  142. 142.
    A. D. Kirilin and A. V. Gavrilova, Russ. J. Gen. Chem. 79, 2458 (2009).CrossRefGoogle Scholar
  143. 143.
    A. D. Kirilin, L. O. Belova, M. V. Pletneva, V. D. Sheludyakov, and A. A. Korlyukov, Russ. J. Gen. Chem. 81, 2252 (2011).CrossRefGoogle Scholar
  144. 144.
    L. O. Belova, M. V. Pletnev, and A. D. Kirilin, Russ. J. Gen. Chem. 83 7, 1365 (2013).CrossRefGoogle Scholar
  145. 145.
    A. D. Kirilin, L. O. Belova, M. V. Pletneva, V. M. Panfilova, P. A. Storozhenko, and V. D. Sheludyakov, Russ. J. Gen. Chem. 81 7, 1493 (2011).CrossRefGoogle Scholar
  146. 146.
    L. O. Belova, M. V. Pletnev, and A. D. Kirilin, Russ. J. Gen. Chem. 84 6, 1115 (2014).CrossRefGoogle Scholar
  147. 147.
    S. Tanaka, T. Yamamura, S. Nakane, and M. Kitamura, Chem. Commun. 51, 13110 (2015).CrossRefGoogle Scholar
  148. 148.
    N. Wiberg and G. Schwenk, Chem. Ber. 104, 3986 (1971).CrossRefGoogle Scholar
  149. 149.
    V. F. Mironov, V. P. Kozyukov, and V. P. Bulatov, Zh. Obshch. Khim. 43 9, 2089 (1973).Google Scholar
  150. 150.
    V. F. Mironov, V. P. Kozyukov, A. D. Kirilin, V. D. Sheludyakov, Yu. I. Dergunov, and I. A. Vostokov, Zh. Obshch. Khim. 45 9, 2007 (1975).Google Scholar
  151. 151.
    V. F. Mironov and V. P. Kozyukov, Zh. Obshch. Khim. 54 6, 1217 (1984).Google Scholar
  152. 152.
    A. V. Lebedev, A. B. Lebedeva, V. D. Sheludyakov, V. V. Shatunov, and S. N. Ovcharuk, Russ. J. Gen. Chem. 77 4, 581 (2007).CrossRefGoogle Scholar
  153. 153.
    M. T. Whited, A. J. Kosanovich, and D. E. Janzen, Organometallics 33, 1416 (2014).CrossRefGoogle Scholar
  154. 154.
    M. T. Whited, L. Qiu, A. J. Kosanovich, and D. E. Janzen, Inorg. Chem. 54, 3670 (2015).CrossRefGoogle Scholar
  155. 155.
    C. Camp, L. Chatelain, C. E. Kefalidis, J. Pécaut, L. Maron, and M. Mazzanti, Chem. Commun. 51, 15454 (2015).CrossRefGoogle Scholar
  156. 156.
    C. H. Yoder and J. J. Zuckerman, Chem. Commun. 1966, 694 (1966).Google Scholar
  157. 157.
    M. T. Zoeckler and R. M. Laine, Org. Chem. 48, 2539 (1983).CrossRefGoogle Scholar
  158. 158.
    C. Wiltzsch, K. Kraushaar, A. Schwarzer, and E. Kroke, Z. Naturforsch. B 66 9, 917 (2011).CrossRefGoogle Scholar
  159. 159.
    K. Kraushaar, C. Wiltzsch, J. Wagler, U. Böhme, A. Schwarzer, G. Roewer, and E. Kroke, Organometallics 31, 4779 (2012).CrossRefGoogle Scholar
  160. 160.
    C. J. Smith, T. R. Early, A. B. Holmes, and R. E. Shute, Chem. Commun. 2004, 1976 (2004).CrossRefGoogle Scholar
  161. 161.
    C. J. Smith, M. W. S. Tsang, A. B. Holmes, R. L. Danheiserd, and J. W. Testerd, Org. Biomol. Chem. 3, 3767 (2005).CrossRefGoogle Scholar
  162. 162.
    M. J. Fuchter, C. J. Smith, M. W. S. Tsang, A. Boyer, S. Saubern, J. H. Ryan, and A. B. Holmes, Chem. Commun. 2008, 2152 (2008).CrossRefGoogle Scholar
  163. 163.
    A. J. Goodsel and G. Blyholder, J. Am. Chem. Soc. 94 19, 6725 (1972).CrossRefGoogle Scholar
  164. 164.
    M. H. Chisholm, F. A. Cotton, M. W. Extine, and W. W. Reichert, J. Am. Chem. Soc. 100 6, 1727 (1978).CrossRefGoogle Scholar
  165. 165.
    T. V. Ashworth and E. Singleton, J. Chem. Soc., Chem. Commun. 1976, 204 (1976).CrossRefGoogle Scholar
  166. 166.
    G. Kaupp, D. Matthies, and C. De Vrese, Chem. Ztg. 113 6, 219 (1989).Google Scholar
  167. 167.
    A. Šturc, J. Pospišil, J. Trojánek, R. Mickova, M. Borovicka, P. Novak, F. Jancik, B. Kakac, J. Krepelka, M. Ferenc, M. Hruby, J. Michalsky, J. Pospišek, K. Blaha, J. Lukac, and J. Chromik, CZ Patent No. 253840 (1988).Google Scholar
  168. 168.
    D. Ballivet-Tkatchenko, H. Chermette, L. Plasseraud, and O. Walter, Dalton Trans., No. 43, 5167 (2006).CrossRefGoogle Scholar
  169. 169.
    M. Aresta, A. Dibenedetto, and C. Pastore, Inorg. Chem. 42, 3256 (2003).CrossRefGoogle Scholar
  170. 170.
    T. Tsuda, Y. Chujo, and T. Saegusa, J. Am. Chem. Soc. 102, 431 (1980).CrossRefGoogle Scholar
  171. 171.
    Yu. F. Rad’kov, E. A. Fedorova, S. Ya. Khorshev, G. S. Kalinina, M. N. Bochkarev, and G. A. Razuvaev, Zh. Obshch. Khim. 55 10, 2153 (1985).Google Scholar
  172. 172.
    L. A. M. Steele, T. J. Boyle, R. A. Kemp, and C. Moore, Polyhedron 42 1, 258 (2012).CrossRefGoogle Scholar
  173. 173.
    E. E. Coyle, B. J. Doonan, A. J. Holohan, K. A. Walsh, F. Lavigne, E. H. Krenske, and C. J. O’Brien, Angew. Chem. Int. Ed. 53 47, 12907 (2014).CrossRefGoogle Scholar
  174. 174.
    Ch. O’Brien, Pat. Appl. No. 2014140353 WIPO/PCT (2014).Google Scholar
  175. 175.
    H. Yildirimyan and G. Gattow, Z. Anorg. Allg. Chem. 466, 188 (1980).CrossRefGoogle Scholar
  176. 176.
    H. Yildirimyan and G. Gattow, Z. Anorg. Allg. Chem. 519, 204 (1984).CrossRefGoogle Scholar
  177. 177.
    Ya. V. Fedotova, E. V. Zhezlova, T. G. Mushtina, A.N. Kornev, T. A. Chesnokova, G. K. Fukin, L. N. Zakharov, and G. A. Domrachev, Russ. Chem. Bull. 52 2, 414 (2003).CrossRefGoogle Scholar
  178. 178.
    V. A. Igonin, S. V. Lindeman, Yu. T. Struchkov, Yu. A. Molodtsova, Yu. A. Pozdnyakova, O. I. Shchegolikhina, and A. A. Zhdanov, Russ. Chem. Bull. 42 1, 176 (1993).CrossRefGoogle Scholar
  179. 179.
    Yu. A. Molodtsova, Yu. A. Pozdniakova, K. A. Lyssenko, I. V. Blagodatskikh, D. E. Katsoulis, and O. I. Shchegolikhina, J. Organomet. Chem. 571, 31 (1998).CrossRefGoogle Scholar
  180. 180.
    E. A. Rebrov, A. M. Muzafarov, and A. A. Zhdanov, Dokl. Akad. Nauk SSSR 302 2, 346 (1988).Google Scholar
  181. 181.
    E. A. Rebrov and A. M. Muzafarov, Heteroat. Chem. 17 6, 514 (2006).CrossRefGoogle Scholar
  182. 182.
    D. Sanli and C. Erkey, J. Mater. Sci. 50, 7159 (2015).CrossRefGoogle Scholar
  183. 183.
    A. Garg, E. Gulari, and C. W. Manke, Macromolecules 27 20, 5643 (1994).CrossRefGoogle Scholar
  184. 184.
    Y. Xiong and E. Kiran, Polymer 36 25, 4817 (1995).CrossRefGoogle Scholar
  185. 185.
    E. Kiran, Ind. Eng. Chem. Res. 41, 6354 (2002).CrossRefGoogle Scholar
  186. 186.
    E. Vyhmeister, A. J. Muscata, D. Suleiman, and L. A. Estévez, Fluid Phase Equilib. 270, 121 (2008).CrossRefGoogle Scholar
  187. 187.
    C. A. Garcia-González, J. Fraile, A. López-Periago, J. Saurina, and C. Domingo, Ind. Eng. Chem. Res. 48, 9952 (2009).CrossRefGoogle Scholar
  188. 188.
    D. Sanli and C. Erkey, J. Supercrit. Fluids 74, 52 (2013).CrossRefGoogle Scholar
  189. 189.
    Ch. Cao, A. Y. Fadeev, and Th. J. McCarthy, Langmuir 17, 757 (2001).CrossRefGoogle Scholar
  190. 190.
    X. Jia and Th. J. McCarthy, Langmuir 18, 683 (2002).CrossRefGoogle Scholar
  191. 191.
    K. Efimenko, B. Novick, R. G. Carbonell, J. M. DeSimone, and J. Genzer, Langmuir 18 16, 6170 (2002).CrossRefGoogle Scholar
  192. 192.
    D. Rébiscoul, V. Perrut, O. Renault, F. Rieutord, S. Olivier, and P.-H. Haumesser, J. Supercrit. Fluids 51, 287 (2009).CrossRefGoogle Scholar
  193. 193.
    T. S. Zemanian, G. E. Fryxell, J. Liu, S. Mattigod, J. A. Franz, and Z. Nie, Langmuir 17 26, 8172 (2001).CrossRefGoogle Scholar
  194. 194.
    J. M. Jung, H. S. Kwon, W.-K. Lee, B.-Ch. Choi, H. G. Kim, and K. T. Lim, Microelectron. Eng. 87, 1680 (2010).CrossRefGoogle Scholar
  195. 195.
    A. M. Kartal and C. Erkey, J. Supercrit. Fluids 53, 115 (2010).CrossRefGoogle Scholar
  196. 196.
    B. A. Ashu-Arrah, J. D. Glennon, and K. Albert, J. Chromatogr. A 1298, 86 (2013).CrossRefGoogle Scholar
  197. 197.
    N. M. Scully, B. A. Ashu-Arrah, A. P. Nagle, J. O. Omamogho, G. P. O’Sullivan, V. Friebolin, B. Dietrich, K. Albert, and J. D. Glennon, J. Chromatogr. A 1218, 1974 (2011).CrossRefGoogle Scholar
  198. 198.
    B. A. Ashu-Arrah, J. D. Glennon, and K. Albert, J. Chromatogr. A 1222, 38 (2012).CrossRefGoogle Scholar
  199. 199.
    D. Sanli and C. Erkey, ACS Appl. Mater. Interfaces 5 22, 11708 (2013).CrossRefGoogle Scholar
  200. 200.
    L. M. Sanz-Moral, M. Rueda, A. Nieto, Z. Novak, Ž. Knez, J. Supercrit. Fluids 84, 74 (2013).CrossRefGoogle Scholar
  201. 201.
    J. R. Combes, L. D. White, and C. P. Tripp, Langmuir 15, 7870 (1999).CrossRefGoogle Scholar
  202. 202.
    D. Stojanovic, A. Orlovic, S. B. Glisic, S. Markovic, V. Radmilovic, P. S. Uskokovic, and R. Aleksic, J. Supercrit. Fluids 52, 276 (2010).CrossRefGoogle Scholar
  203. 203.
    S. Livi, A. A. Silva, J. Pereira, Th. Kh. L. Nguyen, B. G. Soares, M. B. Cardoso, J.-F. Gérard, and J. Duchet-Rumeau, Chem. Eng. J. 241, 103 (2014).CrossRefGoogle Scholar
  204. 204.
    V. Purcar, O. Cinteza, D. Donescu, D. Bala, M. Ghiurea, C. Petcu, and S. Caprarescu, J. Supercrit. Fluids 87, 34 (2014).CrossRefGoogle Scholar
  205. 205.
    D. Vennerberg, R. Hall, and M. R. Kessler, Polymer 55, 4156 (2014).CrossRefGoogle Scholar
  206. 206.
    C. K. Luscombe, H.-W. Li, W. T. S. Huck, and A. B. Holmes, Langmuir 19 13, 5273 (2003).CrossRefGoogle Scholar
  207. 207.
    E. Loste, J. Fraile, M. A. Fanovich, G. F. Woerlee, and C. Domingo, Adv. Mater. 16 8, 739 (2004).CrossRefGoogle Scholar
  208. 208.
    C. Domingo, E. Loste, and J. Fraile, J. Supercrit. Fluids 37, 72 (2006).CrossRefGoogle Scholar
  209. 209.
    C. A. Garcia-González, J. Fraile, A. López-Periago, and C. Domingo, J. Colloid Interface Sci. 338, 491 (2009).CrossRefGoogle Scholar
  210. 210.
    Ch. Roy, A. Vega-González, C. A. Garcia-González, Th. Tassaing, C. Domingo, and P. Subra-Paternault, J. Supercrit. Fluids 54, 362 (2010).CrossRefGoogle Scholar
  211. 211.
    A. M. López-Periago, W. Sandoval, and C. Domingo, Appl. Surf. Sci. 296, 114 (2014).CrossRefGoogle Scholar
  212. 212.
    G. Tepper and N. Levit, Ind. Eng. Chem. Res. 39, 4445 (2000).CrossRefGoogle Scholar
  213. 213.
    M. O. Gallyamov, L. N. Nikitin, A. Yu. Nikolaev, A. N. Obraztsov, V. M. Bouznik, and A. R. Khokhlov, Colloid J. 69 4, 411 (2007).CrossRefGoogle Scholar
  214. 214.
    N. V. Evsyukova, A. M. Myshkovskii, L. M. Polukhina, O. A. Serenko, L. N. Nikitin, and A. M. Muzafarov, Fibre Chem. 41 1, 46 (2009).CrossRefGoogle Scholar
  215. 215.
    A. L. Er. Mohamed, M. Rafik, and M. Moller, Carbohydr. Polym. 98, 1095 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. A. Pigaleva
    • 1
    • 2
  • I. V. Elmanovich
    • 1
    • 2
  • M. N. Temnikov
    • 2
    • 3
  • M. O. Gallyamov
    • 1
    • 2
    Email author
  • A. M. Muzafarov
    • 2
    • 3
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations