Polymer Science Series B

, Volume 56, Issue 5, pp 657–663 | Cite as

The Effect of O6+ and Si7+ ion beam irradiations on poly(lactide-co-glycolide) (50: 50) copolymer

Polymer Destruction

Abstract

Sterilization by ion beam radiations unfortunately also has a significant effect on the degradation of many polymers. The aim of present study is to examine the effect of heavy ion beam irradiation on poly(lactide-co-glycolide) (PLGA) (50: 50). The radiation effect is manifested through its degradation behavior and changes in the morphological, optical and structural properties. PLGA films are prepared by solvent casting method and subsequently irradiated with swift heavy ions O6+ and Si7+ ion with fluence in the range of 5 × 1010−1 × 1012 ions/cm2. The dominant effect on PLGA films is chain scission as evidenced by change in surface modification. Changes in optical and structural properties were analyzed by UV-Vis, XRD and FTIR spectrometric techniques. XRD technique is not responsive to degradation occurring in samples. Surface modifications caused by ion irradiations have been observed with SEM.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Jain, Biomaterials 21, 2475 (2000).CrossRefGoogle Scholar
  2. 2.
    L. G. Griffith, Acta Mater. 48, 263 (2000).CrossRefGoogle Scholar
  3. 3.
    T. R. Tice and E. S. Tabibi, Parenteral Drug Delivery: Injectables. Treatise on Controlled Drug Delivery: Fundamentals Optimization, Applications (Marcel Dekker, New York, 1991).Google Scholar
  4. 4.
    S. Cohen, M. J. Alonso, and R. Langer, Int. J. Technol. Assess. Health Care 10, 121 (1994).CrossRefGoogle Scholar
  5. 5.
    R. Jalil and J. R. Nixon, J. Microencapsulation 7, 297 (1990).CrossRefGoogle Scholar
  6. 6.
    T. R. Tice and D. R. Cowsar, Pharm. Technol. 11, 26 (1994).Google Scholar
  7. 7.
    N. A. Peppas, Y. Huang, M. Torres-Lugo, et al., Annu. Rev. Biomed. Eng. 2, 9 (2000).CrossRefGoogle Scholar
  8. 8.
    T. R. Tice and E. S. Tabibi, Parenteral Drug Delivery: Injectables. Treatise on Controlled Drug Delivery: Fundamentals Optimization, Applications (Marcel Dekker, New York, 1991), pp. 315–339.Google Scholar
  9. 9.
    J. P. Kitchell and D. L. Wise, Methods Enzymol. 112, 436 (1985).CrossRefGoogle Scholar
  10. 10.
    X. S. Wu, Encyclopedic Handbook of Biomaterials, Bioengineering (Marcel Dekker, New York, 1995), pp. 1015–1054.Google Scholar
  11. 11.
    D. H. Lewis, Biodegradable Polymers as Drug Delivery Systems (Marcel Dekker, New York, 1990), pp. 1–41.Google Scholar
  12. 12.
    D. Lesueur and A. Dunlop, Radiat. Eff. Defects Solids 126, 163 (1993).CrossRefGoogle Scholar
  13. 13.
    G. Szenes, Phys. Rev. B 51, 8026 (1995).CrossRefGoogle Scholar
  14. 14.
    D. K. Avasthi, Curr. Sci. 78, 11 (2000).Google Scholar
  15. 15.
    A. Chapiro, Radiation Chemistry of Polymeric Systems (Interscience, London, 1962).Google Scholar
  16. 16.
    T. Ichikawa, Nucl. Instrum. Methods Phys. Res., Sect. B 105, 150 (1995).CrossRefGoogle Scholar
  17. 17.
    A. Charlesby, Radiation Chemistry Principles and Applications (VCH, New York, 1987).Google Scholar
  18. 18.
    R. A. Kenley, M. O. Lee, T. R. Mahoney, and L. M. Sanders, Macromolecules 20(10), 2398 (1987).CrossRefGoogle Scholar
  19. 19.
    L. S. Farenzena, R. M. Papaleo, A. Hallen, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 105, 134 (1995).CrossRefGoogle Scholar
  20. 20.
    M. Lang, U. A. Glasmacher, B. Moine, C. Muller, R. Neumann, and G. A. Wagner, Nucl. Instrum. Methods Phys. Res., Sect. B 191, 346 (2002).CrossRefGoogle Scholar
  21. 21.
    N. F. Mott and E. A. Davis, Electronic Processes in Noncrystalline Materials (Clarendon, Oxford, 1979).Google Scholar
  22. 22.
    F. Urbach, Phys. Rev. 92, 1324 (1953).CrossRefGoogle Scholar
  23. 23.
    S. C. J. Loo, C. P. Y. Ooi, and C. F. Boey, Polym. Degrad. Stab. 83, 259 (2004).CrossRefGoogle Scholar
  24. 24.
    D. C. Erbetta, R. J. Alves, J. M. Resende, et al., J. Biomater. Nanobiotechnol. 3, 208 (2012).CrossRefGoogle Scholar
  25. 25.
    S. C. J. Loo, C. P. Y. Ooi, and C. F. Boey, Biomaterials 26, 3809 (2005).CrossRefGoogle Scholar
  26. 26.
    L. Gautier, B. Mortaigne. V. Bellenger, and J. Verdu, Polymer 41, 2481 (2000).CrossRefGoogle Scholar
  27. 27.
    A. Chapiro, Nucl. Instrum. Methods Phys. Res., Sect. B 32, 111 (1988).CrossRefGoogle Scholar
  28. 28.
    G. Marletta, S. Pignataro, and C. Oliveri, Nucl. Instrum. Methods Phys. Res., Sect. B 39, 792 (1989).CrossRefGoogle Scholar
  29. 29.
    L. Calcagno, G. Compagnini, and G. Foti, Nucl. Instrum. Methods Phys. Res., Sect. B 65, 413 (1992).CrossRefGoogle Scholar
  30. 30.
    L. H. Sperling, An Introduction to Physical Polymer Science 3rd ed. (John Wiley and Sons, Inc., 2001).Google Scholar
  31. 31.
    R. F. Bradly, Comprehensive Desk Reference of Polymer Characterization and Analysis (American Chemical Society, Washington, D.C., 2003).Google Scholar
  32. 32.
    R. Kumar, R. Prasad, Y. K. Vijay, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 21, 221 (1985).Google Scholar
  33. 33.
    H. P. Klug and L. E. Alexander, X-Ray Spectroscopic (John Wiley & Sons, New York, 1974), p. 960.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Department of PhysicsGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of Chemical EngineeringThapar UniversityPatialaIndia

Personalised recommendations