Advertisement

Polymer Science Series B

, Volume 50, Issue 11–12, pp 330–333 | Cite as

Living polymerization of 4-methyl-2-pentyne and 1-trimethylsilyl-1-propyne initiated by NbCl5-Ph4Sn catalyst

  • E. Yu. Sultanov
  • M. Yu. Gorshkova
  • E. N. Semenistaya
  • V. S. Khotimsky
Article

Abstract

The polymerization of 4-methyl-2-pentyne and 1-trimethylsilyl-1-propyne initiated by catalytic systems based on niobium pentachloride and Et3SiH, Bu4Sn, Ph4Sn, and Ph3SiH as cocatalysts has been investigated. Direct evidence for the living polymerization of 4-methyl-2-pentyne and 1-trimethylsilyl-1-propyne with the NbCl5-Ph4Sn catalytic system is derived. These are the linear molecular mass dependence on conversion and the continuation of chain propagation after introduction of a new monomer portion.

Keywords

Polymer Science Series Chain Propagation Molecular Mass Distribution Narrow Molecular Mass Distribution Molecular Mass Distribution Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Masuda, J. Polym. Sci., Part A: Polym. Chem. 45, 165 (2007).CrossRefGoogle Scholar
  2. 2.
    J. W. Lam and B. Z. Tang, J. Polym. Sci., Part A: Polym. Chem. 41, 2607 (2003).CrossRefGoogle Scholar
  3. 3.
    T. Masuda and T. Higashimura, Adv. Polym. Sci. 81, 121 (1987).CrossRefGoogle Scholar
  4. 4.
    T. Masuda, N. Sasaki, and T. Higashimura, Macromolecules 8, 717 (1975).CrossRefGoogle Scholar
  5. 5.
    T. J. Katz and S. M. Hacker, J. Am. Chem. Soc. 107, 2182 (1985).CrossRefGoogle Scholar
  6. 6.
    T. Masuda, T. Yoshimura, J. Fujimori, and T. Higashimura, J. Chem. Soc., Chem. Commun., No. 23, 1805 (1987).Google Scholar
  7. 7.
    J. Kunzler and V. Percec, Polym. Bull. (Berlin) 18, 303 (1987).CrossRefGoogle Scholar
  8. 8.
    S. Hayano and T. Masuda, Macromol. Chem. Phys. 201, 233 (2000).CrossRefGoogle Scholar
  9. 9.
    J. Kunzler and V. Percec, J. Polym. Sci., Part A: Polym. Chem. 28, 1221 (1990).CrossRefGoogle Scholar
  10. 10.
    K. C. Wallace, A. H. Liu, W. M. Davis, and R. R. Schrock, Organometallics 8, 644 (1989).CrossRefGoogle Scholar
  11. 11.
    I. Saeed, M. Shiotsuki, and T. Masuda, Macromolecules 39, 8567 (2006).CrossRefGoogle Scholar
  12. 12.
    M. G. Mayershofer and O. Nuyken, J. Polym. Sci., Part A: Polym. Chem. 43, 5723 (2005).CrossRefGoogle Scholar
  13. 13.
    V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, et al., J. Polym. Sci., Part A: Polym. Chem. 41, 2133 (2003).CrossRefGoogle Scholar
  14. 14.
    W. Yave, K.-V. Peinemann, S. Shishatskiy, et al., Macromolecules 40, 8991 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Morisato and I. Pinnau, J. Membr. Sci. 121, 243 (1996).CrossRefGoogle Scholar
  16. 16.
    V. S. Khotimskii, S. M. Matson, E. G. Litvinova, et al., Polymer Science, Ser. A 45, (2003) [Vysokomol. Soedin., Ser. A 45, 1259 (2003)].Google Scholar
  17. 17.
    A. A. Surovtsev, N. V. Petrushanskaya, O. P. Karpov, et al., RF Patent No. 2 228 323, Byull. Izobret., No. 13 (2004).Google Scholar
  18. 18.
    E. G. Litvinova, V. M. Melekhov, N. V. Petrushanskaya, et al., RF Patent No. 1 823 457, Byull. Izobret., No. 23 (1993).Google Scholar
  19. 19.
    K. Nagai, T. Masuda, T. Nakagawa, et al., Prog. Polym. Sci. 26, 721 (2001).CrossRefGoogle Scholar
  20. 20.
    T. Masuda, E. Isobe, T. Hamano, and T. Higashimura, Macromolecules 19, 2448 (1986).CrossRefGoogle Scholar
  21. 21.
    J. Fujimori, T. Masuda, and T. Higashimura, Polym. Bull. (Berlin) 20, 1 (1988).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • E. Yu. Sultanov
    • 1
  • M. Yu. Gorshkova
    • 1
  • E. N. Semenistaya
    • 1
  • V. S. Khotimsky
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations