Skip to main content
Log in

Monte-Carlo Generator of Heavy Ion Collisions DCM-SMM

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The new monte-carlo generator of heavy ion collisions, DCM-SMM, based on Dubna Cascade Model (DCM-QGSM) and Statistical Multifragmentation Model (SMM) is described. The model aimed to generate particle–nucleus and nucleus–nucleus collisions at a wide range of energy was created to provide the computer simulation support to new experimental facilities BMN and MPD at the accelerator complex NICA. It can simulate the production of both light particles and nuclear fragments and hyperfragments on the event by event basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. V. S. Barashenkov and V. D. Toneev, Interaction of High Energy Particles and Nuclei with Nuclei (Atomizdat, Moscow, 1973) [in Russian].

    Google Scholar 

  2. V. D. Toneev and K. K. Gudima, “Particle emission in light and heavy ion reactions,” Nucl. Phys. A 400, 173–190 (1983).

    ADS  Google Scholar 

  3. V. D. Toneev, N. S. Amelin, K. K. Gudima, and S. Yu. Sivoklokov, “Dynamics of relativistic heavy ion collisions,” Nucl. Phys. A 519, 463–478 (1990).

    ADS  Google Scholar 

  4. N. S. Amelin, K. K. Gudima, and V. D. Toneev, “Quark - gluon string model and ultrarelativistic heavy ion interactions,” Sov. J. Nucl. Phys. 51, 327–333 (1990).

    Google Scholar 

  5. N. S. Amelin, K. K. Gudima, and V. D. Toneev, “Ultrarelativistic nucleus-nucleus collisions within a dynamical model of independent quark - gluon strings,” Sov. J. Nucl. Phys. 51, 1093–1101 (1990).

    Google Scholar 

  6. N. S. Amelin, K. K. Gudima, S. Yu. Sivoklokov, and V. D. Toneev, “Further development of a quark–gluon string model for describing high-energy collisions with a nuclear target,” Sov. J. Nucl. Phys. 52, 172–178 (1991).

    Google Scholar 

  7. J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, “Statistical multifragmentation of nuclei,” Phys. Rep. 257, 133–221 (1995).

    ADS  Google Scholar 

  8. M. Blann, Ann. Rev. Nucl. Sci. 25, 123 (1975).

    ADS  Google Scholar 

  9. S. Furihata, “Statistical analysis of light fragment production from medium energy proton-induced reactions,” Nucl. Instrum. Methods Phys. Res., Sect. B 171, 251–258 (2000); “Development of a generalized evaporation model and study of residual nuclei production,” Ph. D. Thesis (Tohoku Univ., Sendai, Japan, 2003).

  10. N. S. Amelin and L. V. Bravina, “The Monte Carlo realization of quark–gluon string model for description of high-energy hadron hadron interactions,” Sov. J. Nucl. Phys. 51, 133–140 (1990);

    Google Scholar 

  11. N. S. Amelin, L. V. Bravina, L. P. Csernai, V. D. Toneev, K. K. Gudima, and S. Yu. Sivoklokov, “Strangeness production in proton and heavy ion collisions at 200-A-GeV,” Phys. Rev. C 47, 2299–2307 (1993).

    ADS  Google Scholar 

  12. A. Capella, U. Sukhatme, and J. Tran, “Soft multihadron production from partonic structure and fragmentation functions,” Z. Phys. 3, 329–337 (1980).

    Google Scholar 

  13. A. B. Kaidalov, “Quark and diquark fragmentation functions in the model of quark gluon strings,” Sov. J. Nucl. Phys. 45, 902–907 (1987).

    Google Scholar 

  14. R. D. Field and R. P. Feynman, “A parametrization of the properties of quark jets,” Nucl. Phys. B 136, 1–76 (1978).

    ADS  Google Scholar 

  15. H. Schulz, G. Röpke, K. K. Gudima, and V. D. Toneev, “The coalescence phenomenon and the pauli quenching in high-energy heavy-ion collisions,” Phys. Lett. B 124, 458–460 (1983).

    ADS  Google Scholar 

  16. J. Steinheimer, K. Gudima, A. Botvina, I. Mishustin, M. Bleicher, and H. Stocker, “Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production versus coalescence,” Phys. Lett. B 714, 85–91 (2012).

    ADS  Google Scholar 

  17. T. Anticic et al. (NA49 Collab.), “Production of deuterium, tritium, and he in central Pb + Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN SPS,” Phys. Rev. B 94, 044906 (2016).

    Google Scholar 

  18. A. S. Botvina, J. Steinheimer, E. Bratkovskaya, M. Bleicher, and J. Pochodzalla, “Formation of hypermatter and hypernuclei within transport models in relativistic ion collisions,” Phys. Lett. B 742, 7–14 (2015).

    ADS  Google Scholar 

  19. N. Bohr, “Neutron capture and nuclear constitution,” Nature (London, U.K.) 137, 344–348 (1936).

    ADS  MATH  Google Scholar 

  20. A. S. Botvina, A. S. Iljinov, and I. N. Mishustin, “Multifragment break-up of nuclei by intermediate-energy protons,” Nucl. Phys. A 507, 649–674 (1990).

    ADS  Google Scholar 

  21. A. S. Botvina, K. K. Gudima, A. S. Iljinov, and I. N. Mishustin, “Multifragmentation of highly-excited nuclei in nucleus-nucleus collisions at intermediate energies,” Sov. J. Nucl. Phys. 57, 628–635 (1994).

    Google Scholar 

  22. A. S. Botvina, I. N. Mishustin, M. Begemann-Blaich, J. Hubele, G. Imme, I. Iori, R. Kreutz, G. J. Kunde, W. D. Kunze, V. Lindenstruth, U. Lynen, A. Moroni, W. F. J. Mialler, C. A. Ogilvie, J. Pochodzalla, G. Raciti, Th. Rubehn, H. Sann, A. Schtittauf, W. Seidel, W. Trautmann, and A. Werner, “Multifragmentation of spectators in relativistic heavy ion reactions,” Nucl. Phys. A 584, 737–756 (1995).

    ADS  Google Scholar 

  23. Hongfei Xi, T. Odeh, R. Bassini, M. Begemann-Blaich, A. S. Botvina, S. Fritz, S. J. Gaff, C. Groß, G. Immé, I. Iori, U. Kleinevoß, G. J. Kunde, W. D. Kunze, U. Lynen, V. Maddalena, et al., “Breakup temperature of target spectators in Au-197 + Au-197 collisions at e/A = 1000-MeV,” Z. Phys. A 359, 397–406 (1997).

    ADS  Google Scholar 

  24. R. Ogul et al. (ALADIN Collab.), “Isospin-dependent multifragmentation of relativistic projectiles,” Phys. Rev. C 83, 024608 (2011).

    ADS  Google Scholar 

  25. A. S. Botvina, K. K. Gudima, J. Steinheimer, M. Bleicher, and J. Pochodzalla, “Formation of hypernuclei in heavy-ion collisions around the threshold energies,” Phys. Rev. C 95, 014902 (2017).

    ADS  Google Scholar 

  26. N. Eren, N. Buyukcizmeci, R. Ogul, and A. S. Botvina, “Mass distribution in the disintegration of heavy nuclei,” Eur. Phys. J. A 49, 48–54 (2013).

    ADS  Google Scholar 

  27. M. Jandel, A. S. Botvina, S. J. Yennello, G. A. Souliotis, D. V. Shetty, E. Bell, and A. Keksis, “The decay time scale for highly excited nuclei as seen from asymmetrical emission of particles,” J. Phys. G 31, 29–38 (2005).

    ADS  Google Scholar 

  28. P. Bonche, S. Levit, and D. Vautherin, “Statistical properties and stability of hot nuclei,” Nucl. Phys. A 436, 265–293 (1985);

    ADS  Google Scholar 

  29. E. Suraud, “Semi-classical calculations of hot nuclei,” Nucl. Phys. A 462, 109–149 (1987);

    ADS  Google Scholar 

  30. S. Das Gupta, “Mass distributions from microscopic models of heavy ion collisions,” Phys. Rev. C 35, 556–567 (1987);

    ADS  Google Scholar 

  31. B. Strack, “Fragmentation of hot quantum drops,” Phys. Rev. C 35, 691–695 (1987);

    ADS  Google Scholar 

  32. D. H. Boal and J. N. Gloshi, “From binary breakup to multifragmentation: Computer simulation,” Phys. Rev. C 37, 91–100 (1988).

    ADS  Google Scholar 

  33. J. Hubele et al., “Statistical fragmentation of Au projectiles at e/A = 600-MeV,” Phys. Rev. C 46, 1577–1581 (1992).

    ADS  Google Scholar 

  34. P. Desesquelles et al., “Global protocol for comparison of simulated data with experimental data,” Nucl. Phys. A 604, 183–207 (1996).

    ADS  Google Scholar 

  35. P. Napolitani et al., “High-resolution velocity measurements on fully identified light nuclides produced in Fe-56 + hydrogen and Fe-56 + titanium systems,” Phys. Rev. C 70, 054607 (2004).

    ADS  Google Scholar 

  36. L. Pienkowski et al., “Breakup time scale studied in the 8-GeV/c pi-+ Au-197 reaction,” Phys. Rev. C 65, 064606 (2002).

    ADS  Google Scholar 

  37. L. Beaulieu et al., “Signals for a transition from surface to bulk emission in thermal multifragmentation,” Phys. Rev. Lett. 84, 5971–5974 (2000).

    ADS  Google Scholar 

  38. V. A. Karnaukhov et al., “Thermal multifragmentation of hot nuclei and liquid-fog phase transition,” Phys. At. Nucl 66, 1242–1251 (2003).

    Google Scholar 

  39. A. D. Jackson, I. Mishustin, and A. S. Botvina, “Partitioning composite finite systems,” Phys. Rev. E 62, 64–67 (2000).

    ADS  Google Scholar 

  40. E. Fermi, “High-energy nuclear events,” Prog. Theor. Phys. 5, 570–583 (1950).

    ADS  MathSciNet  Google Scholar 

  41. A. S. Botvina and I. N. Mishustin, “Statistical evolution of isotope composition of nuclear fragments,” Phys. Rev. C 63, 061601 (2001).

    ADS  Google Scholar 

  42. A. S. Botvina et al., “Statistical simulation of the breakup of highly excited nuclei,” Nucl. Phys. A 475, 663–686 (1987).

    ADS  Google Scholar 

  43. M. D’Agostino et al., “Statistical multifragmentation in central Au + Au collisions at 35-MeV/U,” Phys. Lett. B 371, 175–180 (1996).

    ADS  Google Scholar 

  44. N. Bellaize et al., “Multifragmentation process for different mass asymmetry in the entrance channel around the Fermi energy,” Nucl. Phys. A 709, 367–391 (2002).

    ADS  Google Scholar 

  45. J. Iglio et al., “Symmetry energy and the isoscaling properties of the fragments produced in 40-Ar, 40-Ca + 58-Fe, 58-Ni reactions at 25, 33, 45, and 53 MeV/nucleon,” Phys. Rev. C 74, 024605 (2006).

    ADS  Google Scholar 

  46. G. Souliotis et al., “Tracing the evolution of the symmetry energy of hot nuclear fragments from the compound nucleus towards multifragmentation,” Phys. Rev. C 75, 011601 (2007).

    ADS  Google Scholar 

  47. J. A. Hauger et al., “Two-stage multifragmentation of 1A GeV Kr, La, and Au,” Phys. Rev. C 62, 024616 (2000).

    ADS  Google Scholar 

  48. R. P. Scharenberg et al., “Comparison of 1-A-GeV Au-197 + c data with thermodynamics: The nature of phase transition in nuclear multifragmentation,” Phys. Rev. C 64, 054602 (2001).

    ADS  Google Scholar 

  49. S. P. Avdeyev et al., “Comparative study of multifragmentation of gold nuclei induced by relativistic protons, He-4, and C-12,” Nucl. Phys. A 709, 392–414 (2002).

    ADS  Google Scholar 

  50. T. Ahmad and M. Irfan, “Inelastic interactions caused by 4.5A GeV/c carbon and silicon nuclei,” Nuov. Cim. A 106, 171–185 (1993).

    ADS  Google Scholar 

  51. N. T. Porile et al. (EOS Collab.), “Multifragmentation of 1-a-GeV Kr, La, and Au on carbon,” Nucl. Phys. A 681, 253–266 (2001).

    ADS  Google Scholar 

  52. A. S. Botvina, K. K. Gudima, J. Steinheimer, M. Bleicher, and I. Mishustin, “N production of spectator hypermatter in relativistic heavy-ion collisions,” Phys. Rev. C 84, 064904 (2011).

    ADS  Google Scholar 

  53. A. S. Botvina and J. Pochodzalla, “Production of hypernuclei in multifragmentation of nuclear spectator matter,” Phys. Rev. C 76, 024909 (2007).

    ADS  Google Scholar 

  54. N. Buyukcizmeci, A. S. Botvina, J. Pochodzalla, and M. Bleicher, “Mechanisms for the production of hypernuclei beyond the neutron and proton drip lines,” Phys. Rev. C 88, 014611 (2013).

    ADS  Google Scholar 

  55. A. S. Botvina, N. Buyukcizmeci, A. Ergun, R. Ogul, M. Bleicher, and J. Pochodzalla, “Formation of hypernuclei in evaporation and fission processes,” Phys. Rev. C 94, 054615 (2016).

    ADS  Google Scholar 

  56. A. S. Botvina, K. K. Gudima, and J. Pochodzalla, “Production of hypernuclei in peripheral relativistic ion collisions,” Phys. Rev. C 88, 054605 (2013).

    ADS  Google Scholar 

  57. N. Buyukcizmeci, A. S. Botvina, A. Ergun, R. Ogul, and M. Bleicher, “Statistical production and binding energy of hypernuclei,” Phys. Rev. C 98, 064603 (2018).

    ADS  Google Scholar 

  58. K. K. Gudima, A. I. Titov, and V. D. Toneev, “Hadronic sources of dileptons from nuclear collisions at intermediate and relativistic energies,” Phys. Lett. B 287, 302–306 (1992).

    ADS  Google Scholar 

  59. D. Blaschke et al., “Topical issue on exploring strongly interacting matter at high densities - NICA white paper,” Eur. Phys. J. A 52, 267 (2016);

    ADS  Google Scholar 

  60. NICA White Paper. http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome. http://nica.jinr.ru/files/WhitePaper.pdf.

  61. L. Adamczyk et al. (STAR Collab.), “Global Λ hyperon polarization in nuclear collisions,” Nature (London, U.K.) 548, 62 (2017).

    ADS  Google Scholar 

  62. J. Adam et al. (STAR Collab.), “Global polarization of hyperons in Au + Au collisions at √sNN = 200 GeV,” Phys. Rev. C 98, 014910 (2018).

    ADS  Google Scholar 

  63. B. Betz, M. Gyulassy, and G. Torrieri, “Polarization probes of vorticity in heavy ion collisions,” Phys. Rev. C 76, 044901 (2007).

    ADS  Google Scholar 

  64. M. Baznat, K. Gudima, A. Sorin, and O. Teryaev, “Helicity separation in heavy-ion collisions,” Phys. Rev. C 88, 061901 (2013); arXiv:1301.7003 [nucl-th].

    ADS  Google Scholar 

  65. M. I. Baznat, K. K. Gudima, A. S. Sorin, and O. V. Teryaev, “Femto-vortex sheets and hyperon polarization in heavy-ion collisions,” Phys. Rev. C 93, 031902 (2016).

    ADS  Google Scholar 

  66. O. Teryaev and R. Usubov, “Vorticity and hydrodynamic helicity in heavy-ion collisions in the in the hadron-string dynamics model,” Phys. Rev. C 92, 014906 (2015).

    ADS  Google Scholar 

  67. O. Teryaev, “Axial anomaly and energy dependence of hyperon polarization in heavy-ion collisions,” Phys. Rev. C 95, 011902 (2017).

    ADS  MathSciNet  Google Scholar 

  68. F. Becattini, V. Chandra, L. del Zanna, and E. Grossi, “Relativistic distribution function for particles with spin at local thermodynamical equilibrium,” Ann. Phys. 338, 32–49 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  69. R.-H. Fang, L.-G. Pang, Q. Wang, and X.-N. Wang, arXiv: 1604.04036 (2016).

  70. L. Adamczyk et al. (STAR Collab.), Nature (London, U.K.) 548, 62 (2017).

    ADS  Google Scholar 

  71. The UrQMD Model. http://urqmd.org.

  72. B. Andersson, G. Gustafson, and B. Nilsson-Almqvist, “A model for low p(t) hadronic reactions, with generalizations to hadron-nucleus and nucleus–nucleus collisions,” Nucl. Phys. B 281, 289–309 (1987).

    ADS  Google Scholar 

  73. V. Gribov, “A reggeon diagram technique,” Sov. Phys. JETP 26, 414–423 (1968);

    ADS  Google Scholar 

  74. L. V. Gribov, E. M. Levin, and M. G. Ryskin, “Semihard processes in QCD,” Phys. Rep. 100, 1–150 (1983).

    ADS  Google Scholar 

  75. C. Pajares and Yu. M. Shabelski, Relativistic Nuclear Interactions (URSS, Moscow, 2007) [in Russian]; A. B. Kaidalov, “Soft interactions of hadrons in QCD,” Surv. High Energ. Phys. 13, 265–330 (1999).

    Google Scholar 

  76. T. Sjöstrand, “The lund Monte Carlo for jet fragmentation and e+ e physics: Jetset version 6.2,” Comput. Phys. Commun. 39, 347–407 (1986).

    ADS  Google Scholar 

  77. L. A. Bravina, I. Arsene, M. S. Nilsson, E. E. Zabrodin, J. Bleibel, Amand Faessler, C. Fuchs, M. Bleicher, G. Burau, and H. Stocker, “Microscopic models and effective equation of state in nuclear collisions at FAIR energies,” Phys. Rev. C 78, 014907 (2007).

    ADS  Google Scholar 

  78. J. L. Klay et al. (E-0895 Collab.), “Charged pion production in 2 to 8 A GeV central Au + Au collisions,” Phys. Rev. C 68, 054905 (2003).

    ADS  Google Scholar 

  79. J. Barrette et al. (E877 Collab.), “Proton and pion production in Au + Au collisions at 10.8 A GeV/c,” Phys. Rev. C 62, 024901 (2000).

    ADS  Google Scholar 

  80. B. B. Back et al. (E917 Collab.), “Baryon rapidity loss in relativistic Au + Au collisions,” Phys. Rev. Lett. 86, 1970–1973 (2001).

    ADS  Google Scholar 

  81. J. Stachel, “Towards the quark-gluon-plasma,” Nucl. Phys. A 654, 119–135 (1999).

    ADS  Google Scholar 

  82. H. Appelshauser et al. (NA49 Collab.), “Baryon stopping and charged particle distributions in central Pb + Pb collisions at 158 GeV per nucleon,” Phys. Rev. Lett. 82, 2471–2475 (1999).

    ADS  Google Scholar 

  83. T. Anticic et al., “Energy and centrality dependence of deuteron and proton production in Pb + Pb collisions at relativistic energies,” Phys. Rev. C 69, 024902 (2004).

    ADS  Google Scholar 

  84. C. Alt et al., “Energy dependence of particle ratio fluctuations in central Pb + Pb collisions from √sNN = 6.3 to 17.3 GeV,” Phys. Rev. C 73, 044910 (2006).

    ADS  Google Scholar 

  85. C. Blume et al., “Centrality and energy dependence of proton, light fragment and hyperon production,” J. Phys. G 34, S951–S954 (2007).

    Google Scholar 

  86. T. Anticic et al., “Centrality dependence of proton and antiproton spectra in Pb + Pb collisions at 40A GeV and 158A GeV measured at the CERN super proton synchrotron,” Phys. Rev. C 83, 014901 (2011).

    ADS  Google Scholar 

  87. C. Pinkenburg et al., “Production and collective behavior of strange particles in Au + Au collisions at 2‑AGeV–8-AGeV,” Nucl. Phys. A 698, 495–498 (2002).

    ADS  Google Scholar 

  88. P. Chung et al., “Near-threshold production of the multistrange Ξ-hyperon,” Phys. Rev. Lett. 91, 202301 (2003).

    ADS  Google Scholar 

  89. C. Alt et al., “Pion and kaon production in central Pb + Pb collisions at 20-A and 30-A-GeV: Evidence for the onset of deconfinement,” Phys. Rev. C 77, 024903 (2008).

    ADS  Google Scholar 

  90. S. V. Afanasiev et al., “Energy dependence of pion and kaon production in central Pb + Pb collisions,” Phys. Rev. C 66, 054902 (2002).

    ADS  Google Scholar 

  91. T. Anticic et al., “Λ and \(\overline \Lambda \) production in central Pb–Pb collisions at 40, 80, and 158A GeV,” Phys. Rev. Lett. 93, 022302 (2004).

    ADS  Google Scholar 

  92. A. Richard et al., “Energy dependence of hyperon production in central Pb + Pb collisions at the CERN-SPS,” J. Phys. G 31, S155–S162 (2005).

    Google Scholar 

  93. M. K. Mitrovski et al., “Strangeness production at SPS energies,” J. Phys. G 32, S43–S50 (2006).

    Google Scholar 

  94. C. Blume et al., “Review of results from the NA49 collaboration,” J. Phys. G31, S685–S692 (2005).

    Google Scholar 

  95. S. V. Afanasiev et al., “Cascade and anti-cascade+ production in central Pb + Pb collisions at 158-GeV/c per nucleon,” Phys. Lett. B 538, 275–281 (2002).

    ADS  Google Scholar 

  96. C. Alt et al., “Omega- and anti-omega+ production in central Pb + Pb collisions at 40-A GeV and 158-A GeV,” Phys. Rev. Lett. 94, 192301 (2005).

    ADS  Google Scholar 

  97. H. Petersen, M. Bleicher, S. A. Bass, and H. Stoker, “UrQMD-2.3—changes and comparisons,” arXiv: hep-ph/0805.0567.

Download references

ACKNOWLEDGMENTS

The authors pay a tribute to one of the founders and a developer of the model prof. Konstantin Gudima who passed away in 2018. M. Baznat and G. Musulmanbekov thank O. Teryaev and O. Rogachevsky for stimulating discussions.

Funding

A. Botvina acknowledges the support of BMBF (Germany). The work has been performed in the framework of the project 18-02-40084/19 supported by RFBR grant “Megascience NICA”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Musulmanbekov.

RUNNING THE CODE

RUNNING THE CODE

The DCM-SMM program is available as an executable binary file on UNIX/Linux platforms. A bash shell script file is provided to define the input parameters and run the program (see A.1.) The input parameters include number of jobs to run, number of events per job, projectile and target charges and atomic numbers, reference system (laboratory or equal velocity) and collision energy, impact parameter range. As a result of simulation two output files are created: *.inf and *.out, where “*” stands for the output file name. The first one contains information about the input parameters as well as some additional information about the reaction, for example, geometric and inelastic cross sections, the number of projectile and target participants, and the parameters used in the simulation. The second file contains the characteristics of particles and nuclear fragments produced on event-by-event basis (see A.2.). Produced particles are identified by their lepton (LN), charge (EN), strange (SN) and baryonic (BN) numbers. Furthermore, they are assigned PDG identification codes, which are given in Table 1. Nuclear codes are given as 10-digit numbers ±10LZZZAAAI. For a (hyper)nucleus consisting of \({{{\text{n}}}_{p}}\) protons, \({{{\text{n}}}_{n}}\) neutrons and \({{{\text{n}}}_{\Lambda }}\)\(\Lambda \)’s, A = \({{{\text{n}}}_{p}}\) + \({{{\text{n}}}_{n}}\) + \({{{\text{n}}}_{\Lambda }}\) gives the total baryon number, Z = \({{{\text{n}}}_{p}}\) the total charge and L = \({{{\text{n}}}_{\Lambda }}\) the total number of strange quarks. I gives the isomer level, with I = 0 corresponding to the ground state and I > 0 to excitations, see [4], where states denoted m, n, p, q translate to I = 1–4. As examples, the deuteron is 1 000 010 020 and 235U is 1 000 922 350 [16].

Table 1.   Particle Data Group (PDG) Monte Carlo particle identification numbers (corresponding antiparticles have negative sign)

A.1. Input File

In order to run the simulation user writes the input parameters in the provided bash shell script file between lines “Begin Input parameters” and “End Input parameters”. The input parameters include

• name of output files,

• name of executable file,

• number of jobs to run,

• number of events per job,

• projectile and target charges and atomic numbers,

• reference system (laboratory or equal velocity),

• collision energy,

• impact parameter interval.

An example of user editable part of the script is given below. The script creates a directory with a name defined by a variable “basename” and generates intermediate input files for running the program within it.

# The basename is the name of the folder for the output files which will

# be created by this script in the directory the script is called.

# The basename will also be in front of every outpufile to easily recognize it

#

# BEGIN Input parameters

basename='AuAu_ss9_mb'

exename='dcm_smm.exe'

jobs_per_energy=1

events_per_job=1000

#

AP=“197.” # Projectile mass

AT=“197.” # Target mass

ZP=“79.” # Projectile charge

ZT=“79.” # Target charge

BMIN=“0.0” # Minimum of impact parameter (fraction, 0 to 1)

BMAX=“1.0” # Maximum of impact parameter (fraction, 0 to 1)

KSYS=2 # Observer system (1 – lab sys, 2 – nucleon-nucleon cms)

E0=“9.0” # Energy (GeV): KSYS=1 -> E0=E_lab; KSYS=2 -> E0=sqrt(s)

#####

# END Input parameters

#

# Here the random seed is initialized

seed=“date +%s”

INPUTFILE=$basename

touch $INPUTFILE

read -d '' str3 <<- EOF

$basename.inf

$basename.out

$AP, $AT, $ZP, $ZT, 0.0, 0.940, $E_coll, $N_events

$STAT

$BMIN, $BMAX, 1, $KSYS

#**************************************

EOF

echo “$str3” > $INPUTFILE

A.2. Output File *.out for a Single Event

The output file *.out begins with a header giving information about the simulated collisions and brief description of the event structure followed by lists of particles generated in each event. The event header is a line containing an event number, number of particles after cascade and coalescence part of the simulation, impact parameter and its x and y components. The next line contains information about target residual nucleus: number of fragments it decayed on, atomic number, charge, strangeness, exitation energy and momentum components. Only the number of fragments could be used for further processing, the rest is for information only. The next lines in a number corresponding to that of the fragments are describing the respective fragments: charge, lepton number, strangeness, barion number, PDG ID, \({{p}_{x}}\), \({{p}_{y}}\), \({{p}_{{{\text{zcm}}}}}\), \({{p}_{{{\text{zlab}}}}}\), and mass. These lines are followed by the same information about the projectile fragments and particles produced after cascade and coalescence stages of a reaction.

Results of DCM-SMM calculations of nuclear collisions

of A1=197.,Z1 = 79. + A2 = 197., Z2 = 79.

at T0= 11.434(sqrt(s)= 5.003) GeV/nucleon in the collider

(equal velocities=cms for A1=A2) system

Characteristics of event:

No. of event, number of produced particles after cascade

and light clusters after coalescence stages, b, bx, by – impact parameter (fm)

Target residual nucleus:

Number of fragments (it decays on), its atomic number,

charge, strangeness, excit. energy and 3-momentum

Characteristics of fragments:

charge, lepton number, strangeness, baryon number, PDGID,

P(x), P(y), P(z), Plab(z), mass

Projectile residual nucleus: the same as for target residual

Characteristics of produced particles after cascade and light clusters after coalescence stages: the same as for fragments

       1        5 14.194  13.709 3.681

    5  194. 78. –0.0.0154  0.1374    0.2630  450.4103

0

0

0

1

2112

1.3901E–02

3.3045E–02

2.3014E+00

1.2286E+01

9.40000E–01

0

0

0

1

2112

–9.4771E–03

4.2047E–02

2.1817E+00

1.1695E+01

9.40000E–01

0

0

0

1

2112

5.3359E–02

3.1486E–02

2.2510E+00

1.2038E+01

9.40000E–01

0

0

0

1

2112

–1.4019E–03

–1.0408E–02

2.5417E+00

1.3481E+01

 9.40000E–01

78

0

0

190

1 000 781 900

8.1056E–02

1.6684E–01

4.4116E+02

2.3536E+03

1.78600E+02

       195. 79. –0.0.0230  0.0102    0.0697 –452.0061

0

0

0

1

2112

1.0937E–02

4.0639E–02

 –2.3661E+00

 –1.4645E–02

 9.40000E–01

0

0

0

1

2112

–1.6699E–02

3.9166E–02

–2.2739E+00

 2.0027E–02

 9.40000E–01

0

0

0

1

2112

–1.1652E–02

–3.2099E–02

 –2.3680E+00

–1.5650E–02

 9.40000E–01

0

0

0

1

2112

–6.1822E–03

–1.3715E–02

–2.2678E+00

 2.1564E–02

 9.40000E–01

79

0

0

191

1 000 791 910

3.3818E–02

3.5689E–02

–4.4274E+02

4.5704E–01

 1.79540E+02

1

0

0

1

2212

2.9709E–01

–3.6733E–01

 –2.1463E+00

 –2.1463E+00

 9.38280E–01

1

0

0

2

1 000 010 020

1.4571E–01

4.1871E–01

4.6205E+00

4.6205E+00

1.87612E+00

0

0

0

1

2112

–6.6378E–02

–1.0530E–01

1.6096E+00

 1.6096E+00

 9.39570E–01

0

0

0

1

2112

–3.6069E–01

 –4.2789E–01

 –2.2049E+00

 –2.2049E+00

 9.39570E–01

–1

0

0

0

–211

–1.6605E–01

1.7860E–01

 –1.2341E–01

 –1.2341E–01

 1.39570E–01

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baznat, M., Botvina, A., Musulmanbekov, G. et al. Monte-Carlo Generator of Heavy Ion Collisions DCM-SMM. Phys. Part. Nuclei Lett. 17, 303–324 (2020). https://doi.org/10.1134/S1547477120030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120030024

Navigation