Skip to main content
Log in

The Seismic Angular Noise of an Industrial Origin Measured by the Precision Laser Inclinometer in the LHC Location Area

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The decreasing of the relaxation time for recovery of the horizontality of the surface of thin layer of the liquid in the cuvette is a new observed phenomenon caused by the meniscus influence in case of the cuvette small inclination. It was experimentally established that the time of reconstruction of the surface of 4 mm thick liquid layer in the cuvette of ∅5 mm at 0.5 µrad of calibration inclining is 0.082 ± 0.006 s. In this case the relative deviation from the liquid surface planarity does not exceed 7%. The physics explanation of the phenomenon observed is proposed. The taking into account of the time duration of liquid surface horizontality reconstruction in the Precision Laser Inclinometer has resulted in the widening of Inclinometer’s sensitivity range up to 12.3 ± 0.9 Hz. The data obtained could be used when seismoisolating of the research equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont, and L. Rossi, “High-Luminosity Large Hadron Collider (HL-LHC),” Preliminary Design Report CERN-2015–005.

  2. G. Arduini et al., “High Luminosity LHC: challenges and plans,” in Proceedings of the 14th Topical Seminar on Innovative Particle and Radiation Detectors Siena, Italy, October 3–6, 2016.

  3. G. Apollinari, O. Brünin, T. Nakamoto, and L. Rossi, “High Luminosity Large Hadron Collider HL-LHC,” arXiv:1705.08830v1 (2017).

  4. G. Apollinari, I. Béjar Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, “High-Luminosity Large Hadron Collider (HL-LHC),” Tech. Des. Report CERN-2017–007-M, Vers. 0.1.

  5. N. Azaryan, J. Budagov, M. Lyablin, A. Pluzhnikov, B. di Girolamo, J.-Ch. Gayde, and D. Mergelkuh, “Determination of the maximum recording frequency by the Precision Laser Inclinometer of an earth surface angular oscillation,” Phys. Part. Nucl. Lett. 14, 920–929 (2017).

    Article  Google Scholar 

  6. J. Budagov, M. Lyablin, and G. Shirkov, “The search for and registration of super weak angular ground motions,” Preprint E18–2013-107 (Dubna, 2013).

  7. W. Herr and B. Muratori, “Concept of luminosity,” Preprint CAS 2006–002 (CAS, CERN, 2006).

  8. H. Burkhardt and P. Grafström, “Absolute luminosity from machine parameters,” CERN-LHC-PROJECT-Report-1019 (CERN, 2007)

    Google Scholar 

  9. N. Azaryan, V. Batusov, J. Budagov, V. Glagolev, M. Lyablin, G. Trubnikov, G. Shirkov, J.-Ch. Gayde, B. di Girolamo, D. Mergelkuhl, and M. Nessi, “The precision laser inclinometer long-term measurement in thermo-stabilized conditions (first experimental data),” Phys. Part. Nucl. Lett. 12, 532–535 (2015).

    Article  Google Scholar 

  10. N. Azaryan, J. Budagov, J.-Ch. Gayde, B. di Girolamo, V. Glagolev, M. Lyablin, D. Mergelkuhl, and G. Shirkov, “The innovative method of high accuracy interferometric calibration of the Precision Laser Inclinometer,” Phys. Part. Nucl. Lett. 14, 112–122 (2017).

    Article  Google Scholar 

  11. "Monitoring underground movements," CERN Bull. No. 41-42/2015 (CERN, 2015).

  12. N. Azaryan, J. Budagov, J.-Ch. Gayde, B. di Girolamo, V. Glagolev, M. Lyablin, Mergelkuhl, and G. Shirkov, “The innovative method of high accuracy interferometric calibration of the Precision Laser Inclinometer,” Phys. Part. Nucl. Lett. 14, 112–122 (2017).

    Article  Google Scholar 

  13. N. Azaryan, J. Budagov, M. Lyablin, A. Pluzhnikov, B. di Girolamo, J.-Ch. Gayde, and D. Mergelkuhl, “The compensation of the noise due to angular oscillations of the laser beam in the Precision Laser Inclinometer,” Phys. Part. Nucl. Lett. 14, 930–938 (2017).

    Article  Google Scholar 

  14. E. Wielandt, “Seismic sensors and their calibration,” in New Manual of Seismological Observatory Practice, Ed. by P. Bormann and E. Bergmann (2012). http://www.geophys.uni-stuttgart.de/seismometry.

  15. E. Wielandt and M. Zumberge, “Measuring seismometer nonlinearity on a shake table,” Bull. Seismol. Soc. Am. 103 (4) (2013).

  16. C.J. Byrne, “Instrument noise in seismometers,” Bull. Seismol. Soc. Am. 51, 69–84 (1961).

    Google Scholar 

  17. B. S. Melton et al., “The sensitivity and dynamic range inertial seismographs,” Rev. Geophys. Space Phys. 14, 93–116 (1976).

    Article  ADS  Google Scholar 

  18. D. Peters, Improving Seismometer Performance at Low Frequencies Using Newly Discovered Physics (Mercer Univ., 2005).

    Google Scholar 

  19. N. Azaryan, J. Budagov, V. Glagolev, M. Lyablin, A. Pluzhnikov, G. Shirkov, B. di Girolamo, J.-Ch. Gayde, and D. Mergelkuhl, “The professional option of the precision laser inclinometer: some technical features and achieved results,” in Proceedings of the CLIC Workshop 2018, January 22–26, 2018, CERN.

  20. C. W. Ebeling, “Inferring ocean storm characteristics from ambient seismic noise: a historical perspective,” Adv. Geophys. 53, 1–33 (2012).

    Article  ADS  Google Scholar 

  21. M. J. Obrebski, F. Ardhuin, E. Stutzmann, and M. Schimmel, “How moderate sea states can generate loud seismic noise in the deep ocean,” Geophys. Res. Lett., 39L11601 (2012).

  22. O. Novotny, Seismic Surface Waves, Lecture Notes for Post-Graduate Studies (Inst. Fis., Inst. Geoci., Salvador, Bahia, 1999).

    Google Scholar 

  23. S. Foti et al., “Guidelines for the good practice of surface wave analysis: a product of the Inter PACIFIC project,” Bull. Earthquake Eng. 16, 2367–2420 (2018).

    Article  Google Scholar 

  24. N. Azaryan, J. Budagov, M. Lyablin, B. Pluzhnikov, B. di Girolamo, J.-Ch. Gayde, and D. Mergelkuhl, “Determination of the maximum recording frequency by the Precision Laser Inclinometer of an earth surface angular oscillation,” Phys. Part. Nucl. Lett. 14, 920–929 (2017).

    Article  Google Scholar 

  25. P. A. Tipler, Physics (Worth, New York, 1980), Chap. 14.

    Google Scholar 

  26. R. de Luca, O. Faella, “Communicating vessels: a non-linear dynamical system,” Rev. Bras. Ensino Fis. 39, e3309 (2017)

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V. Bednyakov, P. Jenni, G. Trubnikov, G. Shirkov for the stable and helpful support; A. Seletsky for the design works for the Precision Laser Inclinometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lyablin.

Ethics declarations

The Dubna group is grateful to the scientific researches fund BMBF (Germany) for the financial support made possible the studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azaryan, N., Budagov, J., Glagolev, V. et al. The Seismic Angular Noise of an Industrial Origin Measured by the Precision Laser Inclinometer in the LHC Location Area. Phys. Part. Nuclei Lett. 16, 343–353 (2019). https://doi.org/10.1134/S1547477119040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477119040046

Navigation