Advertisement

Physics of Particles and Nuclei Letters

, Volume 15, Issue 7, pp 894–897 | Cite as

Study of the New Generation of Thyratrons with Average Switching Power up to 0.5 MW: Experience of Application in Electrophysical Equipment

  • V. D. BochkovEmail author
  • D. V. Bochkov
  • I. A. Salynov
  • V. N. Nikolaev
  • A. S. Krestianinov
  • S. Yu. Sokovnin
  • M. E. Balezin
  • A. P. Ponizovsky
Pulsed High Voltage Generators
  • 7 Downloads

Abstract

An analysis of competitiveness of thyratrons in relation to up-to-date solid-state devices has been carried out. The design features and parameters of a number of new TGI thyratrons with a hot combined impregnated cathode for operating voltages of 30, 50, and 75 kV, average switching power from 150 to 500 kW and pulsed power to 250 MW, are presented. Thyratrons have a tetrode design with air cooling in the metal ceramic version. The main field of application is high-power electrophysical equipment. In particular, we present the examples of using thyratrons in accelerators as modulators, as well as pulse corona power supplies for air purification systems from hydrogen sulfide, ammonia, and other harmful gases in the streamer corona discharge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gas Discharge Closing Switches, Ed. by G. Schaefer, M. Kristiansen, and A. Guenther, Advances in Pulsed Power Technology (Plenum, New York, 1990).Google Scholar
  2. 2.
    V. D. Bochkov, D. V. Bochkov, V. M. Dyagilev, P.V. Panov, V. I. Teryoshin, I. V. Vasiliev, and V. G. Ushich, “Development of high-power gas discharge and electronic vacuum devices for pulsed electrophysic. Current status and prospects,” AIP Conf. Proc. 1771, 070005 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Waldron, K. Brandmier, and V. Temple, “Ultra-fast, high reliability solid state thyratron, ignitron and thyristor replacement,” in Proceedings of the 2015 IEEE Pulsed Power Conference (IEEE, 2015).Google Scholar
  4. 4.
    R. Saerthre, B. Morris, and H. Sanders, “Thyratron replacement for the spallation neutron source Linac extraction kicker PFN systems,” in Proceedings of the 2015 IEEE Pulsed Power Conference (IEEE, 2015).Google Scholar
  5. 5.
    D. B. Ficklin, Jr., “A history of thyratron lifetimes at the Stanford Linear Accelerator Center,” SLAC-PUB-6543 (1994).CrossRefGoogle Scholar
  6. 6.
    J. S. Oh, W. Namkung, and H. Matsumoto, “Lifetime issue of a thyratron for a smart modulator in the C-band linear collider,” in Proceedings of 3nd Asian Conference APAC 2004, Gyeongju, Korea, 2004, pp. 767–769.Google Scholar
  7. 7.
    S. Yu. Sokovnin, M. E. Balezin, and S. V. Shcherbinin, “URT-1M-300 accelerator for radiation technology,” Izv. Vyssh. Uchebn. Zaved., Fiz. 57 (11/3), 297–301 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. D. Bochkov
    • 1
    Email author
  • D. V. Bochkov
    • 1
  • I. A. Salynov
    • 1
  • V. N. Nikolaev
    • 1
  • A. S. Krestianinov
    • 2
  • S. Yu. Sokovnin
    • 3
  • M. E. Balezin
    • 3
  • A. P. Ponizovsky
    • 4
  1. 1.OOO Impul’snye tekhnologiiRyazanRussia
  2. 2.Efremov Research Institute of Electrophysical ApparatusSt. PetersburgRussia
  3. 3.Institute of Electrophysics UroRANYekaterinburgRussia
  4. 4.Horizon Machine-Building Design BureauFGUP NPTsG Salyut DzerzhinskyMoscow oblastRussia

Personalised recommendations