Advertisement

Physics of Particles and Nuclei Letters

, Volume 15, Issue 4, pp 343–347 | Cite as

Assessment of Neutron Star Equation of State by Gravitational Waves

  • Hyun Kyu Lee
Physics of Elementary Particles and Atomic Nuclei. Theory
  • 15 Downloads

Abstract

The possibility of assessing the equation of state of the neutron star matter using gravitational waves is briefly sketched. The effective theory recently proposed in the frame work of the scale-invariant hidden local symmetry is discussed to demonstrate its particular feature of a change over in EoS from lower density to higher density. The possible implications on the gravitational waves from coalescing binary neutron stars are discussed.

Keywords

neutron star equation of state scale invariance hidden local symmetry gravitational wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. B. Demorest et al., Nature (London, U.K.) 467, 1081 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    J. Antoniadis et al., Science (Washington, DC, U. S.) 340, 6131 (2013).CrossRefGoogle Scholar
  3. 3.
    B. P. Abbot et al., Phys. Rev. Lett 116, 061102 (2016).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Aasi et al., Class. Quantum Grav. 32, 074001 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    F. Acernese et al., Class. Quantum Grav. 32, 024001 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    See for example, C. Kim, B. B. P. Perera, and M. A. McLaughlin, Mon. Not. R. Astron. Soc. 448, 928 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    K. S. Thorne, Phys. Rev. D 58, 124031 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    K. Kim, H. K. Lee, and J. Lee, Int. J. Mod. Phys. E 26, 1740011 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys. Rev. D 81, 123016 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    J. S. Read et al., Phys. Rev. D 88, 044042 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    K. Hotokezaka, K. Kyutoku, Y. Sekiguchi, and M. Shibata, Phys. Rev. D 93, 064082 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    W. G. Paeng, T. T. S. Kuo, H. K. Lee, and M. Rho, Phys. Rev. C 93, 055203 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    W. G. Paeng, T. T. S. Kuo, H. K. Lee, Y-L. Ma, and M. Rho, Phys. Rev. D 96, 014031 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    H. K. Lee, B. Y. Park, and M. Rho, Phys. Rev. C 83, 025206 (2011). Phys. Rev. C 84, 059902(E) (2011).ADSCrossRefGoogle Scholar
  16. 16.
    J. S. Read et al., Phys. Rev. D 79, 124032 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    B. D. Lackey and L. Wade, Phys. Rev. D 91, 043002 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    A. Bauswein, N. Stergioulas, and H.-T. Janka, Eur. Phys. J. A 52, 56B (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsHanyang UniversitySeoulKorea

Personalised recommendations