Physics of Particles and Nuclei Letters

, Volume 15, Issue 4, pp 446–455 | Cite as

Clan-Model of Particle Production Process-Revisited in Chaos-based Complex Network Scenario

  • S. BhaduriEmail author
  • A. Bhaduri
  • D. Ghosh
Physics of Elementary Particles and Atomic Nuclei. Experiment


The multiplicity-distribution of High-Energy-Interaction, had earlier been analysed w.r.t. clan-model and Negative-Binomial-Distribution (NBD), which described the underlying particle production process by means of cascading mechanism. Clan was defined to contain the particles stemming from the same ancestor [1] and Average-multiplicity within clan was deduced from the best fitted NBD for the multiplicity-distribution of full-phase-space. Since latest data couldn’t be confronted with NBD alone to deduce number of clans and their internal dynamics, we propose a new rigorous method using complex-network and chaos-based Visibility-Graph-algorithm to extract clusters from different rapidity-regions around the central-rapidity-(cr) of exemplary data of 32S-AgBr(200 A GeV)-interaction. These clusters are found to be scale-free and self-similar. For each cluster Power-of-Scale-freeness-of-Visibility-Graph (PSVG) and two important topological parameters: Average-clustering-co-efficient, Average-degree are extracted based on visibility of the nodes from each other in the Visibility Graph constructed from the cluster. The clan-model is revisited by correlating clusters with clans and Average-degree of the clusters with the number of particles in the clan. For each rapidity-region around (cr) the number of clusters/clans having higher values of both Average-clustering-co-efficient and PSVG, is extracted. For those clusters (Average-degree)/(number-of-particles-in-the-clan) has been calculated. It has been found that there are fewer number of clusters/clans having higher Average- clustering-co-efficient and PSVG, in the rapidity-region nearest to the (cr) and this count increases monotonically across increasing overlapping rapidity-regions around (cr)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Giovannini and L. Hove, “Negative binomial multiplicity distributions in high energyhadron collisions,” Zeitschr. Phys. C 30, 391–400 (1986). Scholar
  2. 2.
    I. Dremin and J. Gary, “Hadron multiplicities,” Phys. Rep. 349, 301–393 (2001). Scholar
  3. 3.
    A. Giovannini and R. Ugoccioni, “Clan structure analysis and QCD parton showers in multiparticle dynamics: an intriguing dialog between theory and experiment,” Int. J. Mod. Phys. A 20, 3897–3999 (2005). Scholar
  4. 4.
    W. Kittel and E. A. de Wolf, Soft Multihadron Dynamics (World Scientific, Singapore, 2005). Scholar
  5. 5.
    J. F. Grosse-Oetringhaus and K. Reygers, “Charged-particle multiplicity in proton-proton collisions,” J. Phys. G: Nucl. Part. Phys. 37, 083001 (2010). Scholar
  6. 6.
    M. Greenwood and G. U. Yule, “An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents,” 83, 255–279 (1920).Google Scholar
  7. 7.
    C. Vignat and A. Plastino, “Estimation in a fluctuating medium and power-law distributions,” Phys. Lett. A 360, 415–418 (2007). Scholar
  8. 8.
    G. Wilk and Z. Wlodarczyk, “Power laws in elementary and heavy-ion collisions,” Eur. Phys. J. A 40, 299 (2009). Scholar
  9. 9.
    B. Carazza and A. Gandol, “Information theory and multiplicity distributions at highenergies,” Lett. Nuovo Cim., Ser. 2 15, 553–559 (1976). Scholar
  10. 10.
    A. Giovannini, “On a statistical generalization of the multiperipheral bootstrap,” Nuovo Cimento A 10, 713–722 (1972). Scholar
  11. 11.
    V. V. Abramov et al., “High pT deuteron and anti-deuteron production in pp and pp a collisions at 70-GeV,” Sov. J. Nucl. Phys. 45, 845 (1987).Google Scholar
  12. 12.
    G. J. H. Burgers, C. Fuglesang, R. Hagedorn, and V. Kuvshinov, “Multiplicity distributionsin hadron interactions derived from the statistical bootstrap model,” Zeitschr. Phys. C 46, 465–480 (1990). Google Scholar
  13. 13.
    S. G. Matinyan and E. B. Prokhorenko, “Branching processes and multiparticle production,” Phys. Rev. D 48, 5127–5132 (1993). ADSCrossRefGoogle Scholar
  14. 14.
    S. Lee and A. Mekjian, “Development of particle multiplicity distributions using a general form of the grand canonical partition function,” Nucl. Phys. A 730, 514–547 (2004). ADSCrossRefGoogle Scholar
  15. 15.
    A. Z. Mekjian, “Fluctuations in the statistical model of relativistic heavy ion collisions,” Nucl. Phys. A 761, 132–148 (2005). ADSCrossRefGoogle Scholar
  16. 16.
    A. Giovannini and L. van Hove, “Negative binomial properties and clan structure in multiplicity distributions,” Acta Phys. Polon. B 19, 495 (1988).Google Scholar
  17. 17.
    G. Wilk and Z. Wodarczyk, “How to retrieve additional information from the multiplicity distributions,” J. Phys. G 44, 015002 (2017). ADSCrossRefGoogle Scholar
  18. 18.
    A. Bialas and R. Peschanski, “Moments of rapidity distributions as a measure of short-range fluctuations in highenergy collisions,” Nucl. Phys., Sect. B 273, 703–718 (1986). ADSCrossRefGoogle Scholar
  19. 19.
    G. Paladin and A. Vulpiani, “Anomalous scaling laws in multifractal objects,” Phys. Rep. 156, 147–225 (1987). ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    E. de Wolf, I. Dremin, and W. Kittel, “Scaling laws for density correlations and fluctuations in multiparticle dynamics,” Phys. Rep. 270, 1–141 (1996). ADSCrossRefGoogle Scholar
  21. 21.
    A. Bialas and R. Peschanski, “Intermittency in multiparticle production at high energy,” Nucl. Phys., Sect. B 308, 857–867 (1988). ADSCrossRefGoogle Scholar
  22. 22.
    P. Grassberger, “Dimensions and entropies of strange attractors from a fluctuating dynamics approach,” Phys. D (Amsterdam, Neth.) 13, 34–54 (1984).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. J. Halsey, L. Kadanoff, I. Procaccia, and B. Shriman, “Fractal measures and their singularities the characterization of strange sets,” Phys. Rev. A 33, 1141–1151 (1986).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    R. Hwa, “Fractal measure in multiparticle production,” Phys. Rev. D 41, 1456–1462 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    F. Takagi, “Multifractal structure of multiplicity distribution in particle collisions at high energies,” Phys. Rev. Lett. 72, 32–35 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    D. Ghosh, A. Deb, and M. Lahiri, “Factorial and fractal analysis of the multipion production process at 350 GeV/c,” Phys. Rev D 51, 3298–3304 (1995). ADSCrossRefGoogle Scholar
  27. 27.
    D. Ghosh, A. Deb, S. Bhattacharyya, and U. Datta, “Multiplicity scaling of target protons in high-energy nucleus nucleus and hadron nucleus interactions,” J. Phys. G 39, 035101 (2012). ADSCrossRefGoogle Scholar
  28. 28.
    C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, “Mosaic organization of DNA nucleotides,” Phys. Rev. E 49, 1685–1689 (1994). ADSCrossRefGoogle Scholar
  29. 29.
    J. W. Kantelhardta, E. Koscielny-Bundea, H. H. A. Rego, S. Havlinb, and A. Bundea, “Detecting long-range correlations with detrended fluctuation analysis,” Phys. A (Amsterdam, Neth.) 295, 441–454 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    M. S. Taqqu and V. W. W. Teverovsky, “Estimations for long-range dependence: an empiricalstudy,” Fractals 3, 785–788 (1995).CrossRefzbMATHGoogle Scholar
  31. 31.
    Z. P. I. Chen, K. Hu, and H. Stanley, “Effect of nonstationarities on detrended fluctuation analysis,” Phys. Rev. E 65, 041107–041122 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, A. Bunde, S. Havlin, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Phys. A (Amsterdam, Neth.) 02, 01383–3 (2002).zbMATHGoogle Scholar
  33. 33.
    W. Y. Zhang and C. Y. Qian, “Multifractal structure of pseudorapidity and azimuthal distributions of the shower particles in Au + Au collisions,” J. Mod. Phys. A 18, 2809–2816 (2007).Google Scholar
  34. 34.
    C. Albajar, O. C. Allkofer, R. J. Apsimon, et al., “Multifractal analysis of minimum bias events in s**(1/2) = 630-GeV anti-p p collisions,” Zeitschr. Phys. C 56, 37–46 (1992). ADSGoogle Scholar
  35. 35.
    D. Ghosh, A. Deb, P. Bandyopadhyay, M. Mondal, S. Bhattacharyya, J. Ghosh, and K. Patra Kumar, “Evidence of multifractality and constant specific heat in hadronic collisions at high energies,” Phys. Rev. C 65, 067902 (2002). ADSCrossRefGoogle Scholar
  36. 36.
    M. K. Suleymanov, M. Sumbera, and I. Zborovsky, “Entropy and multifractal analysis of multiplicity distributions from pp simulated events up to LHC energies,” (2003).Google Scholar
  37. 37.
    D. Ghosh, A. Deb, S. Pal, P. K. Haldar, S. Bhattacharyya, P. Mandal, S. Biswas, and M. Mondal, “Evidence of fractal behavior of pions and protons in high energy interactions an experimental investigation,” Fractals 13, 325–339 (2005). CrossRefGoogle Scholar
  38. 38.
    E. G. Ferreiro and C. Pajares, “High multiplicity pp events and J/nps in production at LHC,” (2012).Google Scholar
  39. 39.
    P. Mali, S. Sarkar, S. Ghosh, A. Mukhopadhyay, and G. Singh, “Multifractal detrended fluctuation analysis of particle density fluctuations in high-energy nuclear collisions,” Phys. A (Amsterdam, Neth) 424, 25–33 (2015). CrossRefGoogle Scholar
  40. 40.
    D. Ghosh, S. Dutta, and S. Chakraborty, “Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status,” Chaos, Solitons Fractals 67, 1–10 (2014).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Bhaduri, S. Bhaduri, and D. Ghosh, “Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure,” Phys. A (Amsterdam, Neth) 482, 786–795 (2017). ADSCrossRefGoogle Scholar
  42. 42.
    S. Bhaduri and D. Ghosh, “Speech, music and multifractality,” Curr. Sci. 110, 1817–1822 (2016). CrossRefGoogle Scholar
  43. 43.
    S. Bhaduri, R. Das, and D. Ghosh, “Non-invasive detection of Alzheimer’s disease-multifractality of emotional speech,” J. Neurol. Neurosci. 7 (2:84), 1–7 (2016).
  44. 44.
    F. Wang, G. p. Liao, X. y. Zhou, and W. Shi, “Multifractal detrended cross-correlation analysis for power markets,” Nonlin. Dyn. 72, 353–363 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Bhaduri, A. Bhaduri, and D. Ghosh, “A new approach of chaos and complex network method to study fluctuation and phase transition in nuclear collision at high energy,” Eur. Phys. J. A 53 (6), 135 (2017). ADSCrossRefGoogle Scholar
  46. 46.
    R. Albert and A. L. Barabási, “Statistical mechanics of complex networks,” Rev. Mod. Phys. 74, 47–97 (2002). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    A. L. Barabási, “The network takeover,” Nat. Phys. 8, 14–16 (2011). Google Scholar
  48. 48.
    S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. W. Kantelhardt, J. Kertész, S. Kirkpatrick, J. Kurths, J. Portugali, and S. Solomon, “Challenges in network science: applications to infrastructures, climate, social systems and economics,” Eur. Phys. J. Spec. Top. 214, 273–293 (2012). CrossRefGoogle Scholar
  49. 49.
    L. Zhao, W. Li, and X. Cai, “Structure and dynamics of stock market in times of crisis,” Phys. Lett. A 380, 654–666 (2016). ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, “From time series to complex networks: The visibility graph,” Proc. Natl. Acad. Sci. U.S.A. 105, 4972–4975 (2008). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    L. Lacasa, B. Luque, J. Luque, and J. C. Nuno, “The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion,” Europhys. Lett. 86 (3) (2009).Google Scholar
  52. 52.
    D. Hofstadter, “Godel, Escher, Bach: an eternal golden braid,” New Society 54, 431 (1980).zbMATHGoogle Scholar
  53. 53.
    M. A. Stern, “Über eine zahlentheoretische Funktion,” J. Reine Angew. Math. 55, 193–220 (1858). MathSciNetCrossRefGoogle Scholar
  54. 54.
    M. Schroeder and K. Wiesenfeld, “Fractals, chaos, power laws: minutes from an infinite paradise,” Phys. Today 44, 91 (1991). CrossRefzbMATHGoogle Scholar
  55. 55.
    J. M. Hausdorff, P. L. Purdon, C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger, “Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations,” J. Appl. Physiol. 80, 1448–1457 (1996). CrossRefGoogle Scholar
  56. 56.
    A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C. K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Nat. Acad. Sci. 99, 2466–2472 (2002).ADSCrossRefGoogle Scholar
  57. 57.
    S. Jiang, C. Bian, X. Ning, and Q. D. Y. Ma, “Visibility graph analysis on heartbeat dynamics of meditation training,” Appl. Phys. Lett. 102, 253–702 (2013).Google Scholar
  58. 58.
    S. Bhaduri and D. Ghosh, “Electroencephalographic data analysis with visibility graph technique for quantitative assessment of brain dysfunction,” Clin. EEG Neurosci., 3–8 (2014). Google Scholar
  59. 59.
    A. Bhaduri and D. Ghosh, “Quantitative assessment of heart rate dynamics during meditation: an ECG based study with multi-fractality and visibility graph,” Front. Physiol. 7 (2016). Google Scholar
  60. 60.
    P. Nilanjana, B. Anirban, B. Susmita, and G. Dipak, “Non-invasive alarm generation for sudden cardiac arrest: a pilot study with visibility graph technique,” Transl. Biomed. 7 (3) (2016).
  61. 61.
    S. Bhaduri, A. Chakraborty, and D. Ghosh, “Speech emotion quantification with chaos-based modified visibility graph-possible precursor of suicidal tendency,” J. Neurol. Neurosci. 7 (3) (2016).
  62. 62.
    S. Bhaduri and D. Ghosh, “Multiplicity fluctuation and phase transition in high-energy collision. A chaosbased study with complex network perspective,” Int. J. Mod. Phys. A 31, 1650185 (2016). ADSCrossRefGoogle Scholar
  63. 63.
    S. Bhaduri and D. Ghosh, “Pion fluctuation in highenergy collisions–a chaos-based quantitative estimation with visibility graph technique,” Acta Phys. Polon. B 48, 741 (2017). ADSCrossRefGoogle Scholar
  64. 64.
    S. Bhaduri and D. Ghosh, “Fractal study of pion void probability distribution in ultrarelativistic nuclear collision and its target dependence,” Mod. Phys. Lett. A 31, 1650158 (2016). ADSCrossRefGoogle Scholar
  65. 65.
    A. Bhaduri, S. Bhaduri, and D. Ghosh, “Azimuthal pion fluctuation in ultra relativistic nuclear collisions and centrality dependence–a study with chaos based complex network analysis,” Phys. Part. Nucl. Lett. 14, 576–583 (2017). CrossRefGoogle Scholar
  66. 66.
    M. Ahmadlou, H. Adeli, and A. Adeli, “Improved visibility graph fractality with application for the diagnosis of Autism Spectrum Disorder,” Phys. A (Amsterdam, Neth.) 391, 4720–4726 (2012).ADSCrossRefGoogle Scholar
  67. 67.
    E. Estrada, “Quantifying network heterogeneity,” Phys. Rev. E 82, 066102 (2010). ADSCrossRefGoogle Scholar
  68. 68.
    D. J. J. Watts and S. H. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature (London, U.K.) 393, 440–442 (1998).ADSCrossRefzbMATHGoogle Scholar
  69. 69.
  70. 70.
    D. B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” J. ACM 24, 1–13 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    M. E. J. Newman, “Assortative mixing in networks,” Phys. Rev. Lett. 89, 208701 (2002). ADSCrossRefGoogle Scholar
  72. 72.
    L. Adamczyk, J. K. Adkins, G. Agakishiev, et al., “Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC,” Phys. Rev. Lett. 113, 092301 (2014). ADSCrossRefGoogle Scholar
  73. 73.
    M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996, pp. 226–231. Google Scholar
  74. 74.
    D. Ghosh, A. Deb, S. Bhattacharyya, and U. Datta, “Rapidity dependence of multiplicity fluctuations and correlations in high-energy nucleus-nucleus interactions,” Pramana J. Phys. 77, 297–313 (2011). ADSCrossRefGoogle Scholar
  75. 75.
    C. F. P. H. F. Powell, and D. H. Perkins, The Study of Elementary Particles by the Photographic Method (Pergamon, Oxford, 1959).Google Scholar
  76. 76.
    A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Rev. 51, 661–703 (2009). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    J. L. Devore, Probability and Statistics for Engineering and the Sciences (2015). Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Deepa Ghosh Research FoundationKolkataIndia

Personalised recommendations