Physics of Particles and Nuclei Letters

, Volume 14, Issue 5, pp 681–686 | Cite as

Top-quark p T -spectra at CMS and flavor independence of z-scaling

Physics of Elementary Particles and Atomic Nuclei. Theory
  • 20 Downloads

Abstract

We present new results of analysis of top-quark differential cross sections obtained by the CMS Collaboration in pp collisions in the framework of the z-scaling approach. The spectra are measured over a wide range of collision energy \(\sqrt s = 7,8,13TeV\) and transverse momentum p T = 30−500 GeV/c of top-quark using leptonic and jet decay modes. Flavor independence of the scaling function ψ(z) is verified in the new kinematic range. The results of analysis of the top-quark spectra obtained at the LHC are compared with similar spectra measured in \(\overline p p\) collisions at the Tevatron energy \(\sqrt s = 1.96TeV\). A tendency to saturation of ψ(z) for the process at low z and a power-law behavior of ψ(z) at high z is observed. The measurements of high-p T is observed. The measurements of highspectra of the top-quark production at highest LHC energy is of interest for verification of self-similarity of particle production, understanding flavor origin and search for new physics symmetries with top-quark probe.

Keywords

high energy proton-proton collisions self-similarity top quark spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Abe et al. (CDF Collab.), Phys. Rev. Lett. 74, 2626 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    S. Abachi et al. (DØ Collab.), Phys. Rev. Lett. 74, 2632 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    V. M. Abazov et al. (DØ Collab.), Phys. Lett. B 693, 515 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    I. Zborovský et al., Phys. Rev. D: Part. Fields 54, 5548 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    M. V. Tokarev et al., Int. J. Mod. Phys. A 16, 1281 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    I. Zborovský and M. V. Tokarev, Phys. Rev. D: Part. Fields 75, 094008 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    I. Zborovský and M. V. Tokarev, Int. J. Mod. Phys. A 24, 1417 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    M. V. Tokarev and I. Zborovský, Nucl. Phys. B Proc. Suppl. 219–220, 301 (2011).CrossRefGoogle Scholar
  9. 9.
    M. V. Tokarev and I. Zborovský, in Proceedings of the International Conference on Hadron Structure and QCD HSQCD'2016, Gatchina, Russia, June 27–July 1, 2016.Google Scholar
  10. 10.
    I. Zborovský and M. V. Tokarev, Int. J. Mod. Phys. 3, 815 (2012).Google Scholar
  11. 11.
    S. Chatrchyan et al. (CMS Collab.), Eur. Phys. J. C 73, 2339 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    V. Khachatryan et al. (CMS Collab.), Eur. Phys. J. C 75, 542 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    V. Khachatryan et al. (CMS Collab.), Eur. Phys. J. C 76, 128 (2016); V. Khachatryan et al. (CMS Collab.), arXiv:1605.00116 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    CMS Collab., CMS PAS TOP-16-011.Google Scholar
  15. 15.
    V. M. Abazov et al. (DØ Collab.), Phys. Rev. D: Part. Fields 90, 092006 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    M. V. Tokarev and I. Zborovský, J. Phys. G: Nucl. Part. Phys. 37, 085008 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow regionRussia
  2. 2.Nuclear Physics InstituteAcademy of Sciences of the Czech RepublicŘežCzech Republic

Personalised recommendations