Physics of Particles and Nuclei Letters

, Volume 14, Issue 5, pp 669–676 | Cite as

Looking for new physics in leptonic and semileptonic decays of B-meson

  • M. A. Ivanov
  • J. G. Körner
  • C. T. Tran
Physics of Elementary Particles and Atomic Nuclei. Theory


We probe possible new physics (NP) effects beyond the standard model (SM) in the decays \({\overline B ^0} \to \pi \tau \overline \upsilon ,{\overline B ^0} \to \rho \tau \overline \upsilon ,and{\overline B ^0} \to \tau \overline \upsilon \), based on an effective Hamiltonian including non-SM operators. Experimental constraints on different NP scenarios are provided by recent measurements of the ratios \({{R\left( {{D^{\left( * \right)}}} \right) \equiv B\left( {{{\overline B }^0} \to {D^{\left( * \right)}}\tau \overline \upsilon } \right)} \mathord{\left/ {\vphantom {{R\left( {{D^{\left( * \right)}}} \right) \equiv B\left( {{{\overline B }^0} \to {D^{\left( * \right)}}\tau \overline \upsilon } \right)} {B\left( {{{\overline B }^0} \to {D^{\left( * \right)}}\mu \overline \upsilon } \right)}}} \right. \kern-\nulldelimiterspace} {B\left( {{{\overline B }^0} \to {D^{\left( * \right)}}\mu \overline \upsilon } \right)}}\), as well as the branching \(B\left( {{B^ - } \to \tau \overline \upsilon } \right)\). The corresponding hadronic form factors and leptonic decay constants are calculated in the covariant confined quark model developed by us.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Lees et al. (BABAR Collab.), “Measurement of an excess of \(\overline B \to {D^{\left( * \right)}}{\tau ^ - }{\overline \upsilon _\tau }\) decays and implications for charged higgs bosons,” Phys. Rev. D 88, 072012 (2013); arXiv:1303.0571 [hep-ex]. doi 10.1103/Phys-RevD.88.072012ADSCrossRefGoogle Scholar
  2. 2.
    M. Huschle et al. (Belle Collab.), “Measurement of the branching ratio of \(\overline B \to {D^{\left( * \right)}}{\tau ^ - }{\overline \upsilon _\tau }\) relative to \(\overline B \to {D^{\left( * \right)}}{l^ - }{\overline \upsilon _l}\) decays with hadronic tagging at Belle,” Phys. Rev. D 92, 072014 (2015); arXiv:1507.03233 [hepex]. doi 10.1103/PhysRevD.92.07201410.1103/Phys-RevD.92.072014ADSCrossRefGoogle Scholar
  3. 3.
    Y. Sato et al. (Belle Collab.), “Measurement of the branching ratio of \({\bar B^0} \to {D^{* + }}{\tau ^ - }{\bar \upsilon _\tau }\) relative to \({\bar B^0} \to {D^{* + }}{l^ - }{\bar \upsilon _l}\) decays with a semileptonic tagging method,” Phys. Rev. D 94, 072007 (2016); arXiv:1607.07923 [hep-ex]. doi 10.1103/Phys-RevD.94.07200710.1103/PhysRevD.94.072007ADSCrossRefGoogle Scholar
  4. 4.
    S. Hirose et al. (Belle Collab.), “Measurement of the lepton polarization and R(D*) in the decay \(\bar B \to {D^{* + }}{\tau ^ - }{\bar \upsilon _\tau }\)” arXiv:1607.07923 [hep-ex] (2016).Google Scholar
  5. 5.
    R. Aaij et al. (LHCb Collab.), “Measurement of the ratio of branching fractions \({{B\left( {{{\bar B}^0} \to {D^{\left( * \right)}}\tau \bar \upsilon } \right)} \mathord{\left/ {\vphantom {{B\left( {{{\bar B}^0} \to {D^{\left( * \right)}}\tau \bar \upsilon } \right)} {B\left( {{{\bar B}^0} \to {D^{* + }}{\mu ^ - }\bar \upsilon } \right)}}} \right. \kern-\nulldelimiterspace} {B\left( {{{\bar B}^0} \to {D^{* + }}{\mu ^ - }\bar \upsilon } \right)}}{\text{ }}\) ,” Phys. Rev. Lett. 115, 111803 (2015); arXiv:1506.08614 [hep-ex]. doi 10.1103/PhysRevLett.115.15990110.1103/PhysRevLett.115.159901ADSCrossRefGoogle Scholar
  6. 6.
    Heavy Flavor Averaging Group (HFAG Collab.), Preliminary Results. Scholar
  7. 7.
    H. Na, C. M. Bouchard, G. P. Lepage, C. Monahan, and J. Shigemitsu (HPQCD Collab.), “Vcb ” Phys. Rev. D 92, 054510 (2015); arXiv:1505.03925 [heplat]. doi 10.1103/PhysRevD.92.05451010.1103/Phys-RevD.92.054510ADSCrossRefGoogle Scholar
  8. 8.
    S. Fajfer, J. F. Kamenik, and I. Nisandzic, “On the \({\bar B^0} \to {D^{\left( * \right)}}\tau {\bar \upsilon _\tau }\) sensitivity to new physics,” Phys. Rev. D 85, 094025 (2012); arXiv:1203.2654 [hep-ph]. doi 10.1103/PhysRevD.85.094025ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Ivanov, J. G. Körner, and C. T. Tran, “Probing new physics in \({\bar B^0} \to {D^{\left( * \right)}}{\tau ^ - }{\bar \upsilon _\tau }\) using the longitudinal, transverse, and normal polarization components of the tau lepton,” Phys. Rev. D 95, 036021 (2017); arXiv:1701.02937 [hep-ph]. doi 10.1103/Phys-RevD.95.03602110.1103/PhysRevD.95.036021ADSCrossRefGoogle Scholar
  10. 10.
    P. Hamer et al. (Belle Collab.), “Search for B0 → π-τ+ντ with hadronic tagging at Belle,” Phys. Rev. D 93, 032007 (2016); arXiv:1509.06521 [hep-ex]. doi 10.1103/Phys-RevD.93.03200710.1103/PhysRevD.93.032007ADSCrossRefGoogle Scholar
  11. 11.
    C. Patrignani et al. (Particle Data Group), “Review of particle physics,” Chin. Phys. C 40, 100001 (2016). doi 10.1088/1674-1137/40/10/100001ADSCrossRefGoogle Scholar
  12. 12.
    M. Bona et al. (UTfit Collab.), “An improved standard model prediction of BR(B → τν) and its implications for new physics,” Phys. Lett. B 687, 61–69 (2010); arXiv:0908.3470 [hep-ph]. doi 10.1016/j.physletb.2010.02.063; Preliminary Results at 10.1016/j.physletb.2010.02.063ADSCrossRefGoogle Scholar
  13. 13.
    C. H. Chen and C. Q. Geng, “Charged Higgs on \(\bar B \to \tau {\bar \upsilon _\tau }and\bar B \to P\left( V \right)\lambda {\bar \upsilon _l}\)” J. High Energy Phys. 10, 053 (2006); arXiv:hep-ph/0608166. doi 10.1088/1126-6708/2006/10/05310.1088/1126-6708/2006/10/053ADSCrossRefGoogle Scholar
  14. 14.
    A. Khodjamirian, T. Mannel, N. Offen, and Y.-M. Wang, “V ub from QCD light-cone sum rules,” Phys. Rev. D 83, 094031 (2011); arXiv:1103.2655 [hep-ph]. doi 10.1103/Phys-RevD.83.094031ADSCrossRefGoogle Scholar
  15. 15.
    F. U. Bernlochner, “\(\bar B \to \pi \tau {\bar \upsilon _\tau }\) decay in the context of type II 2HDM,” Phys. Rev. D 92, 115019 (2015); arXiv:1509.06938 [hep-ph]. doi 10.1103/PhysRevD.92.11501910.1103/PhysRevD.92.115019ADSCrossRefGoogle Scholar
  16. 16.
    C. S. Kim and R. M. Wang, “Study of the exclusive \(b \to u{l^ - }{\overline \upsilon _l}\) decays in the MSSM with and without R-parity violation,” Phys. Rev. D 77, 094006 (2008); arXiv:0712.2954 [hep-ph]. doi 10.1103/Phys-RevD.77.094006ADSCrossRefGoogle Scholar
  17. 17.
    M. Tanaka and R. Watanabe, “New physics contributions in \(\bar B \to \pi \tau \bar \upsilon \) and \(B \to \tau \bar \upsilon \)” Prog. Theor. Exp. Phys. 2017, 013B05 (2017); arXiv:1608.05207 [hep-ph]. doi 10.1093/ptep/ptw17510.1093/ptep/ptw175Google Scholar
  18. 18.
    R. Dutta, A. Bhol, and A. K. Giri, “Effective theory approach to new physics in bu and bc leptonic and semileptonic decays,” Phys. Rev. D 88, 114023 (2013). arXiv:1307.6653 [hep-ph]. doi 10.1103/PhysRevD.88.114023ADSCrossRefGoogle Scholar
  19. 19.
    A. Celis, M. Jung, X. Q. Li, and A. Pich, “Scalar contributions to bc(u)τν transitions,” arXiv:1612.07757 [hep-ph] (2016).Google Scholar
  20. 20.
    T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner, and V. E. Lyubovitskij, “Relativistic constituent quark model with infrared confinement,” Phys. Rev. D 81, 034010 (2010); arXiv:0912.3710 [hep-ph]. doi 10.1103/PhysRevD.81.034010ADSCrossRefGoogle Scholar
  21. 21.
    M. A. Ivanov, J. G. Körner, S. G. Kovalenko, P. Santorelli, and G. G. Saidullaeva, “Form factors for semileptonic, nonleptonic and rare B(B s) meson decays,” Phys. Rev. D 85, 034004 (2012); arXiv:1112.3536 [hep-ph]. doi 10.1103/PhysRevD.85.034004ADSCrossRefGoogle Scholar
  22. 22.
    M. A. Ivanov and C. T. Tran, “Exclusive decays \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-\nulldelimiterspace} \psi } \to D_{\left( s \right)}^{{{\left( * \right)}^ - }}{l^ + }{\upsilon _l}\) in a covariant constituent quark model with infrared confinement,” Phys. Rev. D 92, 074030 (2015); arXiv:1701.07377 [hep-ph]. doi 10.1103/PhysRevD.92.07403010.1103/PhysRevD.92.074030ADSCrossRefGoogle Scholar
  23. 23.
    J. G. Körner and G. A. Schuler, “Lepton mass effects in semileptonic B meson decays,” Phys. Lett. B 231, 306–311 (1989). doi 10.1016/0370-2693(89)90220-7ADSCrossRefGoogle Scholar
  24. 24.
    J. G. Körner and G. A. Schuler, “Exclusive semileptonic heavy meson decays including lepton mass effects,” Z. Phys. C 46, 93 (1990). doi 10.1007/BF02440838ADSGoogle Scholar
  25. 25.
    M. A. Ivanov, J. G. Korner, and C. T. Tran, “Exclusive decays \(B \to {l^ - }\overline \upsilon \) and \(B \to {D^{\left( * \right)}}{l^ - }\overline \upsilon \) in the covariant quark model,” Phys. Rev. D 92, 114022 (2015); arXiv:1508.02678 [hep-ph]. doi 10.1103/PhysRevD.92.11402210.1103/PhysRevD.92.114022ADSCrossRefGoogle Scholar
  26. 26.
    M. A. Ivanov, J. G. Korner, and C. T. Tran, “Analyzing new physics in the decays \({\overline B ^0} \to {D^{\left( * \right)}}{\tau ^ - }\overline \upsilon \) with form factors obtained from the covariant quark model,” Phys. Rev. D 94, 094028 (2016); arXiv:1607.02932 [hep-ph]. doi 10.1103/PhysRevD.94.09402810.1103/Phys-RevD.94.094028ADSCrossRefGoogle Scholar
  27. 27.
    A. Sibidanov et al. (Belle Collab.), “ V ub using full reconstruction tagging at the belle experiment,” Phys. Rev. D 88, 032005 (2013); arXiv:1306.2781 [hep-ex]. doi 10.1103/PhysRevD.88.032005ADSCrossRefGoogle Scholar
  28. 28.
    P. Sanchez del Amo et al. (BABAR Collab.), “V ub,” Phys. Rev. D 83, 032007 (2011); arXiv:1005.3288 [hep-ex]. doi 10.1103/PhysRevD.83.032007ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations