Physics of Particles and Nuclei Letters

, Volume 14, Issue 4, pp 571–575 | Cite as

Characteristics of spontaneous fission of 250No

  • A. I. Svirikhin
  • A. V. Andreev
  • A. V. Yeremin
  • I. N. Izosimov
  • A. V. Isaev
  • A. N. Kuznetsov
  • A. A. Kuznetsova
  • O. N. Malyshev
  • A. G. Popeko
  • Y. A. Popov
  • E. A. Sokol
  • M. L. Chelnokov
  • V. I. Chepigin
  • T. M. Schneidman
  • B. Gall
  • O. Dorvaux
  • P. Brione
  • K. Hauschild
  • A. Lopez-Martenz
  • K. Rezynkina
  • S. Mullins
  • P. Jones
  • P. Mosat
Physics of Elementary Particles and Atomic Nuclei. Experiment
  • 35 Downloads

Abstract

This study describes an experiment on investigating the properties of spontaneous fission of shortlived neutron-deficient nuclei synthesized in the reaction of complete fusion 48Ca + 204Pb = 252No*. The experiment is performed using the SHELS separator and the beam of multicharged ions at U-400 accelerator (LNR, JINR). Two activities undergoing spontaneous fission, which can be related to the ground and isomeric states of 250No nucleus, are registered. The half-lives, total kinetic energies of fission fragments, and neutron multiplicities are measured for the short-lived nuclei. The average number of neutrons per fission for the activity with t1/2 = 5.1 ± 0.3 μs is = 4.38 ± 0.13 μs, and for nuclei with the half-life t1/2 = 36 ± 3 μs it is xxxxx.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Hoffman, “Spontaneous fission properties and life-time systematic,” Nucl. Phys. A 502, 21–40 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    E. K. Hulet, “Role of the second barrier upon mass division in the spontaneous fission of the heaviest elements,” Phys. At. Nucl. 57, 1099 (1994).Google Scholar
  3. 3.
    A. S. Vorobyev, V. N. Dushin, F.-J. Hambsch, V. A. Jakovlev, V. A. Kalinin, A. B. Laptev, B. F. Petrov, and O. A. Shcherbakov, “Distribution of prompt neutron emission probability for fission fragments in spontaneous fission of 252Cf and 244, 248Cm,” in Proceedings of the International Conference On Nuclear Data for Science and Technology, Santa Fe, NM, USA, 2004, AIP Conf. Proc. 769, 613–616 (2005).ADSGoogle Scholar
  4. 4.
    D. C. Hoffman, G. P. Ford, J. P. Balagna, and L. R. Veeser, “Neutron multiplicity measurements of Cf and Fm isotopes,” Phys. Rev. C 21, 637–646 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Svirikhin, V. N. Dushin, M. L. Chelnokov, V. I. Chepigin, I. N. Izosimov, D. E. Katrasev, O.N. Malyshev, A. Minkova, A. G. Popeko, E. A. Sokol, and A. V. Yeremin, “Neutron multiplicity at spontaneous fission of 246Fm,” Eur. Phys. J. A 44, 393–396 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Svirikhin, A. V. Andreev, V. N. Dushin, M. L. Chelnokov, V. I. Chepigin, M. Gupta, A. V. Isaev, I. N. Izosimov, D. E. Katrasev, A. N. Kuznetsov, O.N.Malyshev, S. Mullins, A. G. Popeko, E. A. Sokol, and A. V. Yeremin, “The emission of prompt neutrons from the spontaneous fission of 252No and 244Fm,” Eur. Phys. J. A 48, 121–127 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Svirikhin, A. V. Yeremin, I. N. Izosimov, A. V. Isaev, A. N. Kuznetsov, O. N. Malyshev, A. G. Popeko, Yu. A. Popov, E. A. Sokol, M. L. Chelnokov, V. I. Chepigin, B. Andel, M. Z. Asfari, B. Gall, N. Yoshihiro, Z. Kalaninova et al., “Spontaneous fission of 256Rf, new data,” Phys. Part. Nucl. Lett. 13, 480 (2016).CrossRefGoogle Scholar
  8. 8.
    A. V. Belozerov, M. L. Chelnokov, V. I. Chepigin, T. P.Drobina, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, I. M. Merkin, Yu. Ts. Oganessian, A. G. Popeko, R. N. Sagaidak, A. I. Svirikhin, A. V. Yeremin, G. Berek, I. Brida, and S. Saro, “Spontaneous-ission decay properties and production crosssections for the neutron-deficient nobelium isotopes formed in the 44,48Ca + 204,206,208Pb reactions,” Eur. Phys. J. A 16, 447–456 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    D. Peterson, B. B. Back, R. V. F. Janssens, T. L. Khoo, C. J. Lister, D. Seweryniak, I. Ahmad, M. P. Carpenter, C. N. Davids, A. A. Hecht, C. L. Jiang, T. Lauritsen, X. Wang, and S. Zhu, “Decay modes of 250No,” Phys. Rev. C 74, 014316 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, O. V. Ivanov, A. N. Voinov, V. I. Zagrebaev, et al., “Measurements of cross sections for the fusion-evaporation reactions 204,206,207,208Pb + 48Ca and 207Pb + 34S: decay properties of the even-even nuclides 238Cf and 250No,” Phys. Rev. C 64, 054606 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Yeremin, A. G. Popeko, O. N. Malyshev, A. Lopez-Martens, K. Hauschild, O. Dorvaux, B. Gall, V. I. Chepigin, A. I. Svirikhin, A. V. Isaev, E. A. Sokol, M. L. Chelnokov, A. N. Kuznetsov, A. A. Kuznetsova, A. V. Belozerov, et al., “First experimental tests of the modernized VASSILISSA separator,” Phys. Part. Nucl. Lett. 12, 35 (2015).CrossRefGoogle Scholar
  12. 12.
    A. V. Yeremin, A. G. Popeko, O. N. Malyshev, B. Gall, Z. Asfari, A. Lopez-Martens, K. Hauschild, O. Dorvaux, B. N. Gikal, S. L. Bogomolov, V. N. Loginov, A. E. Bondarchenko, V. I. Chepigin, A. I. Svirikhin, A. V. Isaev, et al., “Experimental tests of the modernized VASSILISSA separator (SHELS) with the use of accelerated 50Ti ions,” Phys. Part. Nucl. Lett. 12, 43 (2015).CrossRefGoogle Scholar
  13. 13.
    A. I. Svirikhin, A. V. Isaev, A. V. Yeremin, A. N. Kuznetsov, O. N. Malyshev, A. G. Popeko, E.A. Sokol, M. L. Chelnokov, V. I. Chepigin, “A detector for studying the characteristics of spontaneous fission of short-lived heavy nuclei,” Instrum. Exp. Tech. 54, 644 (2011).CrossRefGoogle Scholar
  14. 14.
    C. E. Bemis, R. L. Ferguson, Jr., F. Plasil, R. J. Silva, F. Pleasontonv, and R. L. Hahn, “Fragment-mass and kinetic-energy distributions from the spontaneous fission of 252No,” Phys. Rev. C 15, 705–712 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    F. R. Xu, E. G. Zhao, R. Wyss, and P. M. Walker, “Enhanced stability of superheavy nuclei due to highspin isomerism,” Phys. Rev. Lett. 92, 252501 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    R.-D. Herzberg, P. T. Greenlees, P. A. Butler, G. D. Jones, M. Venhart, I. G. Darby, S. Eeckhaudt, K. Eskola, T. Grahn, C. Gray-Jones, F. P. Hessberger, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, et al., “Nuclear isomers in superheavy elements as stepping stones towards the island of stability,” Nature 442, 896–899 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    F. P. Heßberger, S. Antalic, B. Sulignano, D. Ackermann, S. Heinz, S. Hofmann, J. Khuyagbaatar, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, B. Kindler, K. Nishio, S. Saro, et al., “Decay studies of K-isomers in 254No,” Eur. Phys. J. A 43, 55–66 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    G. G. Adamian, N. V. Antonenko, and W. Scheid, “High-spin isomers in some of the heaviest nuclei: spectra, decays, and population,” Phys. Rev. C 81, 024320 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. I. Svirikhin
    • 1
  • A. V. Andreev
    • 1
  • A. V. Yeremin
    • 1
  • I. N. Izosimov
    • 1
  • A. V. Isaev
    • 1
  • A. N. Kuznetsov
    • 1
  • A. A. Kuznetsova
    • 1
  • O. N. Malyshev
    • 1
  • A. G. Popeko
    • 1
  • Y. A. Popov
    • 1
  • E. A. Sokol
    • 1
  • M. L. Chelnokov
    • 1
  • V. I. Chepigin
    • 1
  • T. M. Schneidman
    • 1
  • B. Gall
    • 2
  • O. Dorvaux
    • 2
  • P. Brione
    • 2
  • K. Hauschild
    • 3
  • A. Lopez-Martenz
    • 3
  • K. Rezynkina
    • 3
  • S. Mullins
    • 4
  • P. Jones
    • 4
  • P. Mosat
    • 5
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.IPHCIN2P3-CNRSStrasbourgFrance
  3. 3.CSNSMIN2P3-CNRSOrsayFrance
  4. 4.iThemba LABSCape TownSouth Africa
  5. 5.Comenius University in BratislavaBratislavaSlovakia

Personalised recommendations