Physics of Particles and Nuclei Letters

, Volume 14, Issue 1, pp 1–8 | Cite as

QCD analysis of the F3 structure function based on inverse Mellin transform in analytic perturbation theory

Physics of Elementary Particles and Atomic Nuclei. Theory
  • 20 Downloads

Abstract

A QCD analysis of combined experimental data on the F3 structure function is performed using the inverse Mellin transform in the framework of analytical perturbation theory. Within this approach, the form of the F3 structure function, the value of the QCD scale parameter Λ, and the x dependence of the higher twist contribution are determined. The accuracy of the method based on Jacobi polynomials is estimated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Buras, “Asymptotic freedom in deep inelastic processes in the leading order and beyond,” Rev. Mod. Phys. 52, 199 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    F. Indurain, Quantum Chromodynamics (Springer, Berlin, Heidelberg, 1983; Mir, Moscow, 1986).Google Scholar
  3. 3.
    D. V. Shirkov and I. L. Solovtsov, “Analytic model for the QCD running coupling with universal αs(0)value,” Phys. Rev. Lett. 79, 1209 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    K. A. Milton and I. L. Solovtsov, “Analytic perturbation theory in QCD and Schwinger’s connection between the β-function and the spectral density,” Phys. Rev. D 55, 5295 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    I. L. Solovtsov and D. V. Shirkov, “Analytic approach in quantum chromodynamics,” Theor. Math. Phys. 120, 1220 (1999).CrossRefMATHGoogle Scholar
  6. 6.
    D. V. Shirkov and I. L. Solovtsov, “Ten years of the analytic perturbation theory in QCD,” Theor. Math. Phys. 150, 132 (2007).CrossRefMATHGoogle Scholar
  7. 7.
    A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, “QCD analytic perturbation theory: from integer powers to any power of the running coupling,” Phys. Rev. D: Part. Fields 72, 074014 (2005), Erratum: Phys. Rev. D: Part. Fields 72, 119908(E) (2005).ADSCrossRefGoogle Scholar
  8. 8.
    A. P. Bakulev, “Global fractional analytic perturbation theory in QCD with selected applications,” Phys. Part. Nucl. 40, 715 (2009).CrossRefGoogle Scholar
  9. 9.
    G. Cvetic and A. V. Kotikov, “Analogs of noninteger powers in general analytic QCD,” J. Phys. G 39, 065005 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    R. S. Pasechnik, D. V. Shirkov, O. V. Teryaev, O. P. Solovtsova, and V. L. Khandramai, “Nucleon spin structure and pQCD frontier on the move,” Phys. Rev. D: Part. Fields 81, 016010 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    G. Cvetic, A. Y. Illarionov, B. A. Kniehl, and A. V. Kotikov, “Small-x behavior of the structure function F 2 and its slope d ln F 2/d ln (1/x) for ‘frozen’ and analytic strong-coupling constants,” Phys. Lett. B 679, 350 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Kotikov, V. G. Krivokhizhin, and B. G. Shaikhatdenov, “Analytic and ‘frozen’ QCD coupling constants in QCD up to NNLO from DIS data,” Phys. At. Nucl. 75, 507 (2012).CrossRefGoogle Scholar
  13. 13.
    C. Ayala and S. V. Mikhailov, “How to perform a QCD analysis of DIS in analytic perturbation theory,” Phys. Rev. D: Part. Fields 92, 014028 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Sidorov and O. P. Solovtsova, “The QCD analysis of xF 3 structure function based on the analytic approach,” Nonlin. Phenom. Complex Syst. 16, 397 (2013).Google Scholar
  15. 15.
    A. V. Sidorov and O. P. Solovtsova, “The QCD analysis of the combined set for the F 3 structure function data based on the analytic approach,” Mod. Phys. Lett. A 29, 1450194 (2014).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. V. Sidorov and O. P. Solovtsova, “Non-singlet Q 2-evolution and the analytic approach to quantum chromodynamics,” Nonlin. Phenom. Complex Syst. 18, 222 (2015).Google Scholar
  17. 17.
    A. V. Sidorov and O. P. Solovtsova, “Polarized nonsinglet Δq 3 and nonsinglet fragmentation function D uv pi+ in the analytic approach to QCD,” PoS(Baldin ISHEPP XXII), 019 (2015); arXiv:1411.6975[hep-ph].Google Scholar
  18. 18.
    G. Parisi and N. Sourlas, “A simple parametrization of the Q 2 dependence of the quark distributions in QCD,” Nucl. Phys. B 151, 421 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    V. G. Krivokhizhin et al., “QCD analysis of singlet structure functions using Jacobi polynomials: the description of the method,” Z. Phys. C 36, 51 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Krivokhizhin et al., “Next-to-leading order QCD analysis of structure functions with the help of Jacobi polynomials,” Z. Phys. C 48, 347 (1990)CrossRefGoogle Scholar
  21. 20a.
    A. C. Benvenuti et al. (BCDMS Collab.), “Test of QCD and a measurement of Λ from scaling violations in the proton structure function F 2 (x, Q 2) at high Q 2,” Phys. Lett. B 223, 490 (1987)ADSCrossRefGoogle Scholar
  22. 20b.
    A. V. Kotikov, G. Parente, and J. Sanchez-Guillen, “Renormalization scheme invariant analysis of the DIS structure functions F 2 and F L,” Z. Phys. C 58, 465 (1993)ADSCrossRefGoogle Scholar
  23. 20c.
    A. L. Kataev and A. V. Sidorov, “The Jacobi polynomials QCD analysis of the CCFR data for xF 3 and the Q 2 dependence of the Grosspi Llewellyn-Smith sum rule,” Phys. Lett. B 331, 179 (1994).ADSCrossRefGoogle Scholar
  24. 21.
    A. L. Kataev et al., “Next to next-to-leading order QCD analysis of the revised CCFR data for xF 3 structure function and the higher twist contributions,” Phys. Lett. B 417, 374 (1998).ADSCrossRefGoogle Scholar
  25. 22.
    A. L. Kataev, G. Parente, and A. V. Sidorov, “Higher twists and αs(Mz) extractions from the NNLO QCD analysis of the CCFR data for the xF 3 structure function,” Nucl. Phys. B 573, 405 (2000).ADSCrossRefGoogle Scholar
  26. 23.
    A. L. Kataev, G. Parente, and A. V. Sidorov, “Improves fits to the xF 3 CCFR data at the next-to-next-to-leading order and beyond,” Phys. Part. Nucl. 34, 20 (2003), Erratum: Phys. Part. Nucl. 38, 827(E) (2007).Google Scholar
  27. 24.
    B. G. Shaikhatdenov et al., “QCD coupling constant at NNLO from DIS data,” Phys. Rev. D: Part. Fields 81, 034008 (2010).ADSCrossRefGoogle Scholar
  28. 25.
    A. V. Kotikov, “Deep inelastic scattering: Q 2 dependence of structure functions,” Phys. Part. Nucl. 38, 1 (2007).CrossRefGoogle Scholar
  29. 26.
    V. L. Khandramai, R. S. Pasechnik, D. V. Shirkov, O. P. Solovtsova, and O. V. Teryaev, “Four-loop QCD analysis of the Bjorken sum rule vs. data,” Phys. Lett. B 706, 340 (2012).ADSCrossRefGoogle Scholar
  30. 27.
    V. L. Khandramai, O. P. Solovtsova, and O. V. Teryaev, “QCD analysis of the Bjorken sum rule revisited,” Phys. Part. Nucl. 45, 49 (2014).CrossRefGoogle Scholar
  31. 28.
    K. A. Milton and I. L. Solovtsov, “Can the QCD effective charge be symmetrical in the euclidean and the minkowskian regions?,” Phys. Rev. D 59, 107701 (1999).ADSCrossRefGoogle Scholar
  32. 29.
    A. P. Bakulev and V. L. Khandramai, “FAPT: a mathematica package for calculations in QCD fractional analytic perturbation theory,” Comput. Phys. Commun. 184, 183 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 30.
    C. Ayala and G. Cvetic, “anQCD: fortran programs for couplings at complex momenta in various analytic QCD models,” Comput. Phys. Commun. 199, 114 (2016).ADSCrossRefMATHGoogle Scholar
  34. 31.
    A. V. Sidorov, “QCD analysis of the CCFR data for xF 3 and higher twist contribution,” Phys. Lett. B 389, 379 (1996)ADSCrossRefGoogle Scholar
  35. 31a.
    A. V. Sidorov, “Next to next-to-leading order QCD analysis of combined data for xF 3 structure function and higher twist contribution,” JINR Rapid Commun. 80, 11 (1996).Google Scholar
  36. 32.
    M. Virchaux and A. Milsztajn, “A measurement of αs and higher twists from a QCD analysis of high statistics F 2 data on hydrogen and deuterium targets,” Phys. Lett. B 274, 221 (1992).ADSCrossRefGoogle Scholar
  37. 33.
    G. Parente, A. V. Kotikov, and V. G. Krivokhizhin, “Next to next-to-leading order QCD analysis of DIS structure functions,” Phys. Lett. B 333, 190 (1994).ADSCrossRefGoogle Scholar
  38. 34.
    M. Glück and E. Reya, “Operator mixing and scaling deviations in asymptotically free field theories,” Phys. Rev. D: Part. Fields 14, 3034 (1976).ADSCrossRefGoogle Scholar
  39. 35.
    D. A. Kosower, “Evolution of parton distributions,” Nucl. Phys. B 506, 439 (1997).ADSCrossRefGoogle Scholar
  40. 36.
    M. Glück, E. Reya, and A. Vogt, “Dynamical parton distributions revisited,” Eur. Phys. J. C 5, 461 (1998).ADSCrossRefGoogle Scholar
  41. 37.
    J. P. Berge et al., “A measurement of differential crosssections and nucleon structure functions in charged current neutrino interactions on iron,” Z. Phys. C 49, 187 (1991).CrossRefGoogle Scholar
  42. 38.
    V. V. Ammosov et al., “Study of nucleon structure functions in neutrino interactions,” IHEP Preprint No. 87-081 (IHEP, Serpukhov, 1987).Google Scholar
  43. 39.
    P. C. Bosetti et al. (Aachen-Bonn-CERN-Democritos-London-Oxford-Saclay Collab.), “Comparison of nucleon structure functions in bubble chamber neutrino experiments with QCD predictions,” Nucl. Phys. B 203, 362 (1982).ADSCrossRefGoogle Scholar
  44. 40.
    K. Varvell et al. (BEBC WA59 Collab.), “Measurement of the structure functions F 2 and xF 3 and comparison with QCD predictions including kinematical and dynamical higher twist effects,” Z. Phys. C 36, 1 (1987).ADSCrossRefGoogle Scholar
  45. 41.
    M. Tzanov et al. (NuTeV Collab.), “Precise measurement of neutrino and anti-neutrino differential cross sections,” Phys. Rev. D: Part. Fields 74, 012008 (2006).ADSCrossRefGoogle Scholar
  46. 42.
    G. Onengut et al. (CHORUS Collab.), “Measurement of nucleon structure functions in neutrino scattering,” Phys. Lett. B 632, 65 (2006).ADSCrossRefGoogle Scholar
  47. 43.
    W. G. Seligman et al. (CCFR Collab.), “Improved determination of αs from neutrino nucleon scattering,” Phys. Rev. Lett. 79, 1213 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Gomel State Technical UniversityGomelBelarus

Personalised recommendations