Physics of Particles and Nuclei Letters

, Volume 14, Issue 1, pp 87–101 | Cite as

The quantum charged particle self-interaction problem within the Fock many temporal and Feynman proper time paradigms

Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

A quantum fermionic massless charged particle self-intercating with its own self-generated bosonic electromagnetic field is reanalyzed in the framework of the Fock many-temporal and Feynman proper time approaches. The self-interaction phenomenon structure is discussed within the renormalized quantum Fock space. The quantum electromagnetic charged particle mass origin is suggested.

Keywords

quantum massless fermionic field charged particle self-interaction problem quantum Maxwell electrodynamics charged particle shell model inertial mass problem least action principle Lagrangian formalism Feynman proper time paradigm modified Abraham–Lorentz radiation reaction force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abraham, “Dynamik des Electrons,” Nachr. Geselsch. Wissensch. Göttingen, Math.-Phys. Kl., 20 (1902).Google Scholar
  2. 2.
    R. Abraham and J. Marsden, Foundations of Mechanics, 2nd ed. (Benjamin Cummings, New York, 1987).Google Scholar
  3. 3.
    A. Annila, “The meaning of mass,” Int. J. Theor. Math. Phys. 2 (4), 67–78 (2012).CrossRefGoogle Scholar
  4. 4.
    V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).CrossRefMATHGoogle Scholar
  5. 5.
    B. di Bartolo, Classical Theory of Electromagnetism, 2nd ed. (World Scientific, NJ, 2004).CrossRefMATHGoogle Scholar
  6. 6.
    R. Becker, Theorie der Elektrizitat, Pt. 2: Elektronentheorie (Teubner, Berlin, 1933) [in German].Google Scholar
  7. 7.
    J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).MATHGoogle Scholar
  8. 8.
    D. Blackmore, A. K. Prykarpatsky, and V. Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis (World Scientific, NJ, 2011).CrossRefMATHGoogle Scholar
  9. 9.
    D. Blackmore, A. K. Prykarpatski, and N. N. Bogolubov, Jr., “Mathematical foundations of the classical Maxwell-Lorentz electrodynamic models in the canonical lagrangian and hamiltonian formalisms,” Univers. J. Phys. Appl. 1, 160–178 (2013).Google Scholar
  10. 10.
    K. Bleuer, “Eine neue Methose zum Behandlung der longitudinalen und skalaren Photonen,” Helv. Phys. Acta 23, 567 (1950).Google Scholar
  11. 11.
    N. N. Bogolubov and N. N. Bogolubov, Jr., Introduction into Quantum Statistical Mechanics (World Scientific, NJ, 1986).MATHGoogle Scholar
  12. 12.
    N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer, Nertherlands, 1990).CrossRefMATHGoogle Scholar
  13. 13.
    N. N. Bogolubov and D. V. Shirkov, Quantum Fields (Addison-Wesley, Reading, MA, 1982).Google Scholar
  14. 14.
    A. K. Prykarpatsky, “The Maxwell electromagnetic equations and the Lorentz type force derivation—the Feynman approach legacy,” Int. J. Theor. Phys. 5, 237–245 (2012).CrossRefMATHGoogle Scholar
  15. 15.
    A. K. Prykarpatsky, “The analysis of lagrangian and hamiltonian properties of the classical relativistic electrodynamics models and their quantization,” Found. Phys. 40, 469–493 (2010).ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    N. N. Bogolubov, Jr., A. K. Prykarpatsky, and D. Blackmore, “Maxwell–Lorentz electrodynamics revisited via the lagrangian formalism and Feynman proper time paradigm,” Mathematics 3, 190–257 (2015).CrossRefMATHGoogle Scholar
  17. 17.
    N. N. Bogolubov, Jr., A. K. Prykarpatsky, U. Taneri, and Y. A. Prykarpatsky, “The electromagnetic Lorentz condition problem and symplectic properties of Maxwell-and Yang–Mills-type dynamical systems,” J. Phys. A: Math. Theor. 42, 165401 (2009).ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    L. Brillouin, Relativity Reexamined (Academic, New York, London, 1970).Google Scholar
  19. 19.
    P. A. M. Dirac, “An extensible model of the electron,” Proc. R. Soc. London, Ser. A 167, 148–169 (1938).ADSCrossRefMATHGoogle Scholar
  20. 20.
    P. A. M. Dirac, V. A. Fock, and B. Podolsky, “On quantum electrodynamics,” Sow. Phys. 2, 468–479 (1932).MATHGoogle Scholar
  21. 21.
    F. J. Dyson, “Feynman’s proof of the Maxwell equations,” Am. J. Phys. 58, 209–211 (1990).ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    F. J. Dyson, “Feynman at Cornell,” Phys. Today 42 (2), 32–38 (1989).CrossRefGoogle Scholar
  23. 23.
    A. Einstein, Jahrb. Radioaktiv. 5, 422 (1907).Google Scholar
  24. 24.
    E. Fermi, Rev. Mod. Phys. 4, 87 (1932).ADSCrossRefGoogle Scholar
  25. 25.
    H. G. Dehmlet, Einstein’s own words: “You know, it would be sufficient to really understand the electron,” in Nobel Lecture, December 8, 1989.Google Scholar
  26. 26.
    R. P. Feynman, Statistical Mechanics, Advanced Book Classics (Perseus Books, Reading, 1998).Google Scholar
  27. 27.
    R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2: Electrodynamics (Addison-Wesley, Reading, MA, 1964).MATHGoogle Scholar
  28. 28.
    R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, The Modern Science on the Nature, Vol. 1: Mechanics. Space, Time, Motion (Addison-Wesley, Reading, MA, 1963).Google Scholar
  29. 29.
    V. Fock, “Die Eigenzeit in der klassischen und in der Quantenmechanik,” Sow. Phys. 12, 404–425 (1937).MATHGoogle Scholar
  30. 30.
    V. A. Fock and B. Podolsky, “On the quantization of electromagnetic waves and the interaction of charges in Dirac’s theory,” Sow. Phys. 1, 801–817 (1932).MATHGoogle Scholar
  31. 31.
    T. L. Gill and W. W. Zachary, “Two mathematically equivalent versions of Maxwell equations,” Preprint (Univ. of Maryland, 2008).MATHGoogle Scholar
  32. 32.
    T. L. Gill and W. W. Zachary, “Two mathematically equivalent versions of Maxwell’s equations,” Found. Phys. 4, 99–128 (2011).ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    T. L. Gill, W. W. Zachary, and J. Lindsey, “The classical electron problem,” Found. Phys. 31, 1299–1355 (2001).MathSciNetCrossRefGoogle Scholar
  34. 34.
    C. Godbillon, Geometrie differentielle et mecanique analytique (Hermann, Paris, 1969) [in French].MATHGoogle Scholar
  35. 35.
    S. N. Gupta, “Theory of longitudinal photons in quantum electrodynamics,” Proc. Phys. Soc. London A 63, 681 (1950).ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    R. T. Hammond, “Electrodynamics and radiation reaction,” Found. Phys. 43, 201–209 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    R. T. Hammond, “Relativistic particle motion and radiation reaction,” Electron. J. Theor. Phys., No. 23, 221–258 (2010).Google Scholar
  38. 38.
    P. Higgs, “Broken symmetries and the masses of Gauge bosons,” Phys. Rev. Lett. 13, 508 (1964); “Spontaneous symmetry breakdown without massless bosons,” Phys. Rev. 145, 1156 (1964).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    G. t’Hooft, “Massive Yang-Mills fields,” Nucl. Phys. B 35, 167 (1971).ADSCrossRefGoogle Scholar
  40. 40.
    K. Huang, Statistical Mechanics (Wiley, New York, 1987).MATHGoogle Scholar
  41. 41.
    J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).MATHGoogle Scholar
  42. 42.
    M. Jammer, Concepts of Mass in Contemporary Physics and Philosophy (Princeton Univ. Press, Princeton, 2009).CrossRefGoogle Scholar
  43. 43.
    B. P. Kosyakov, “Radiation in electrodynamics and in Yang-Mills theory,” Sov. Phys. Usp. 35, 135–142 (1992).ADSCrossRefGoogle Scholar
  44. 44.
    B. P. Kosyakov, Introduction to the Classical Theory of Particles and Fields (Springer, Berlin, 2007).MATHGoogle Scholar
  45. 45.
    B. A. Kupershmidt, “Infinite-dimensional analogs of the minimal coupling principle and of the Poincare lemma for differential two-forms,” Diff. Geom. Appl. 2, 275–293 (1992).ADSMathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).Google Scholar
  47. 47.
    H. A. Lorentz, “Electromagnetic phenomena in a system moving with any velocity smaller than that of light,” in Proceedings of the Royal Netherlands Academy of Arts and Sciences, 1904, Vol. 6, pp. 809–831.Google Scholar
  48. 48.
    H. A. Lorentz, “Theory of electrons,” Arch. Neerland. Sci. Exact. Naturel. 25, 363 (1892); The Theory of Electrons (Teubner, Leipzig, 1916).Google Scholar
  49. 49.
    H. A. Lorentz, The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat (Editions Jacques Gabay, Paris, 1992).MATHGoogle Scholar
  50. 50.
    A. A. Martins and M. J. Pinheiro, “On the electromagnetic origin of inertia and inertial mass,” Int. J. Theor. Phys. 47, 2706–2715 (2008).MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    R. Medina, “Radiation reaction of a classical quasirigid extended particle,” J. Phys. A: Math. Gen., 3801–3816 (2006).Google Scholar
  52. 52.
    H. Minkowski, “Raum und Zeit,” Phys. Z. 10, 104 (1909).MATHGoogle Scholar
  53. 53.
    V. B. Morozov, “On the question of the electromagnetic momentum of a charged body,” Phys. Usp. 181, 389–392 (2011).CrossRefGoogle Scholar
  54. 54.
    A. Ori and E. J. Rosenthal, “Calculation of the self force using the extended-object approach,” Math. Phys. 45, 2347 (2004).ADSMathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    A. Ori and E. J. Rosenthal, “Universal self-force from an extended object approach,” Phys. Rev. D: Part. Fields 68, 041701R (2003).ADSCrossRefGoogle Scholar
  56. 56.
    L. Page and N. I. Adams, Jr., “Action and reaction between moving charges,” Am. J. Phys. 13, 141–147 (1945).ADSCrossRefGoogle Scholar
  57. 57.
    P. T. Pappas, “The original Ampere force and Biot-Savart and Lorentz force,” Nuovo Cimento B 76, 189–197 (1983).ADSCrossRefGoogle Scholar
  58. 58.
    W. Pauli, Theory of Relativity (Oxford Univ. Press, Oxford, 1958).MATHGoogle Scholar
  59. 59.
    D. T. Pegg, “Absorber theory of radiation,” Rep. Prog. Phys. 38, 1339–1383 (1975).ADSCrossRefGoogle Scholar
  60. 60.
    H. Poincare, “Sur la dynamique de l’electron,” C.R. Acad. Sci. (Paris) 140, 1504–1508 (1905).MATHGoogle Scholar
  61. 61.
    A. K. Prykarpatski, “Classical electromagnetic theory revisiting: the A. M. Ampere law and the vacuum field theory approach,” Univers. J. Phys. Appl. 2, 381–413 (2014).Google Scholar
  62. 62.
    U. Taneri, “The relativistic electrodynamics least action principles revisited: new charged point particle and hadronic string models analysis,” Int. J. Theor. Phys. 49, 798–820 (2010).MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    A. K. Prykarpatsky and N. N. Bogolubov, Jr., “On the classical Maxwell-Lorentz electrodynamics, the inertia problem and the Feynman proper time paradigm,” Ukr. J. Phys. 61, 187–212 (2016).CrossRefGoogle Scholar
  64. 64.
    H. E. Puthoff, “Casimir vacuum energy and the semicalssical electron,” Int. J. Theor. Phys. 46, 3005–3008 (2007).CrossRefMATHGoogle Scholar
  65. 65.
    F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading, MA, 1965).MATHGoogle Scholar
  66. 66.
    F. Rohrlich, “Self-energy and stability of the classical electron,” Am. J. Phys. 28, 639–643 (1960).ADSMathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    G. Rousseaux, “The Gauge non-invariance of classical electromagnetism,” arXiv:physics/0506203v1.Google Scholar
  68. 68.
    G. Rousseaux, “On the physical meaning of the Gauge conditions of classical electromagnetism: the hydrodynamics analogue viewpoint,” arXiv:physics/0511047v1 [physics.class-ph].Google Scholar
  69. 69.
    J. Schwinger, Quantum Electrodynamics (Dover, New York, 1958).MATHGoogle Scholar
  70. 70.
    J. J. Slawianowski, Geometry of Phase Spaces (Wiley, New York, 1991).MATHGoogle Scholar
  71. 71.
    V. M. Simulik, “The electron as a system of classical electromagnetic and scalar fields,” in What is the electron? Ed. by V. M. Simulik (Apeiron, Montreal, 2005), pp. 109–134.Google Scholar
  72. 72.
    C. Teitelboim, “Splitting of the Maxwell tensor: radiation reaction without advanced fields,” Phys. Rev. D: Part. Fields 1, 1572–1582 (1970).ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).MATHGoogle Scholar
  74. 74.
    J. B. Wheeler and R. P. Feynman, “Interaction with the absorber as the mechanism of radiation,” Rev. Mod. Phys. 17, 157–181 (1946).ADSCrossRefGoogle Scholar
  75. 75.
    F. Wilczek, “Origins of mass,” Report MIT-CTP/4379 (Center for Theor. Phys., MIT, MA, 2012); arXiv:1206.7114v2 [hep-ph].Google Scholar
  76. 76.
    F. Wilczek, “QCD and natural phylosophy,” Ann. Henry Poincare 4, 211–228 (2003).ADSCrossRefGoogle Scholar
  77. 77.
    Y. Yaremko and V. Tretyak, Radiation Reaction in Classical Field Theory (LAP Lambert Academic, Germany, 2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Applied Mathematics at AGH University of Science and TechnologyKrakowPoland
  2. 2.V.A. Steklov Mathematical Institute of RASMoscowRussia

Personalised recommendations