Physics of Particles and Nuclei Letters

, Volume 13, Issue 6, pp 737–746 | Cite as

The optical module of Baikal-GVD

  • A. D. Avrorin
  • A. V. Avrorin
  • V. M. Aynutdinov
  • R. Bannash
  • I. A. Belolaptikov
  • D. Yu. Bogorodsky
  • V. B. Brudanin
  • N. M. Budnev
  • A. R. Gafarov
  • O. N. Gaponenko
  • K. V. Golubkov
  • T. I. Gress
  • I. A. Danilchenko
  • Zh. -A. M. Dzhilkibaev
  • G. V. Domogatsky
  • A. A. Doroshenko
  • A. N. Dyachok
  • V. A. Zhukov
  • A. V. Zagorodnikov
  • V. L. Zurbanov
  • K. G. Kebkal
  • O. G. Kebkal
  • A. V. Kozhin
  • K. V. Konischev
  • A. V. Korobchenko
  • F. K. Koshel
  • A. P. Koshechkin
  • V. F. Kulepov
  • D. A. Kuleshov
  • V. I. Ljashuk
  • M. B. Milenin
  • R. A. Mirgazov
  • E. R. Osipova
  • A. I. Panfilov
  • L. V. Pan’kov
  • E. N. Pliskovsky
  • M. I. Rozanov
  • E. V. Rjabov
  • A. V. Skurihin
  • A. A. Smagina
  • O. V. Suvorova
  • V. A. Tabolenko
  • B. A. Tarashansky
  • S. V. Fialkovsky
  • Z. Honz
  • B. A. Shaybonov
  • A. A. Sheifler
  • M. D. Shelepov
  • S. A. Yakovlev
Physics of Elementary Particles and Atomic Nuclei. Experiment
  • 14 Downloads

Abstract

In April 2015, the first cluster of Baikal-GVD was deployed in Lake Baikal and put into operation. It comprises eight strings. Each string consists of 24 optical modules. An optical module is a detection element of Baikal-GVD; it includes a Hamamatsu R7081-100 photomultiplier tube with a high quantum sensitivity. We describe the design of the optical module, the front-end electronics, and the laboratory characterization and calibration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Aynutdinov et al. (Baikal Collab.), “The Baikal neutrino experiment: NT200+ and beyond,” Nucl. Instrum. Methods Phys. Res. A 572, 511–514 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    V. Aynutdinov et al. (Baikal Collab.), “The Baikal neutrino experiment: status, selected physics results, and perspectives,” Nucl. Instrum. Methods Phys. Res. A 588, 99–106 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    V. Aynutdinov et al. (Baikal Collab.), “The prototype string for the km3-scale Baikal neutrino telescope,” Nucl. Instrum. Methods Phys. Res. A 602, 227–234 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    A. Avrorin et al. (Baikal Collab.), “An experimental string of the NT1000 Baikal neutrino telescope,” Instrum. Exp. Tech. 54, 649–659 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Avrorin et al. (Baikal Collab.), “The Baikal neutrino experiment,” Nucl. Instrum. Methods Phys. Res. A 626–627, S13–S18 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Avrorin et al. (Baikal Collab.), “The gigaton volume detector in lake Baikal,” Nucl. Instrum. Methods Phys. Res. A 639, 30–32 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    Zh. Dzhilkibaev et al. (Baikal Collab.), “Status of the BAIKAL neutrino experiment,” Bull. Russ. Acad. Sci.: Phys. 75, 414–415 (2011).Google Scholar
  8. 8.
    A. Avrorin et al. (Baikal Collab.), “The prototyping/ early construction phase of the BAIKAL-GVD project,” Nucl. Instrum. Methods Phys. Res. A 742, 82–88 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    A. Avrorin et al. (Baikal Collab.), “Status and recent results of the BAIKAL-GVD project,” Phys. Part. Nucl. 46, 211–221 (2015).CrossRefGoogle Scholar
  10. 10.
    V. Aynutdinov et al. (Baikal Collab.), “Prototype string for a km3 Baikal neutrino telescope,” in Proceedings of Roma International Conference on Astro-Particle Physics, Roma, Italy, June 20–22, 2007.Google Scholar
  11. 11.
    A. Avrorin et al. (Baikal Collab.), “Data acquisition system for a km3-scale Baikal neutrino telescope,” in Proceedings of the 32nd International Cosmic Ray Conference, Beijing, China, 2011.Google Scholar
  12. 12.
    A. Avrorin et al. (Baikal Collab.), “Data acquisitions system of the NT1000 Baikal neutrino telescope,” Instrum. Exp. Tech. 57, 262–273 (2014).CrossRefGoogle Scholar
  13. 13.
    A. Avrorin et al. (Baikal Collab.), “A hydroacoustic positioning system for the experimental cluster of the cubic-kilometer-scale neutrino telescope at lake Baikal,” Instrum. Exp. Tech. 56, 449–458 (2013).CrossRefGoogle Scholar
  14. 14.
    D. A. Leahy et al. (DUMAND Collab.), “Optical module for DUMAND II -japanese version,” in Proceedings of the 23rd International Cosmic Ray Conference, Alberta, Canada, July 19–30, 1993, p.546.Google Scholar
  15. 15.
    R. Abbasi et al. (IceCube Collab.), “The IceCube data acquisition system: signal capture, digitization, and timestamping,” Nucl. Instrum. Methods Phys. Res. A 601, 294–316 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    R. Abbasi et al. (IceCube Collab.), “Calibration and characterization of the IceCube photomultiplier tube,” Nucl. Instrum. Methods Phys. Res. A 618, 139–152 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    P. Amram et al. (ANTARES Collab.), “The ANTARES optical module,” Nucl. Instrum. Methods Phys. Res. A 484, 369–383 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    A. Margiotta et al. (KM3NeT Collab.), “The KM3NeT deep-sea neutrino telescope,” Nucl. Instrum. Methods Phys. Res. A 766, 83–87 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    K. J. Ma, W. G. Kang, J. K. Ahn, S. Choi, Y. Choi, M. J. Hwang, J. S. Jang, E. J. Jeon, K. K. Joo, H. S. Kim, J. Y. Kim, S. B. Kim, S. H. Kim, W. Kim, Y. D. Kim, et al., “Time and amplitude of afterpulse measured with a large size photomultiplier tube,” Nucl. Instrum. Methods Phys. Res. A 629, 93–100 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    A. Avrorin et al. (Baikal Collab.), “Time and amplitude calibration of the Baikal-GVD neutrino telescope,” in Proceedings of the 34th International Cosmic Ray Conference, The Hague, The Netherlands, July 30–August 6, 2015.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. D. Avrorin
    • 1
  • A. V. Avrorin
    • 1
  • V. M. Aynutdinov
    • 1
  • R. Bannash
    • 7
  • I. A. Belolaptikov
    • 2
  • D. Yu. Bogorodsky
    • 3
  • V. B. Brudanin
    • 2
  • N. M. Budnev
    • 3
  • A. R. Gafarov
    • 3
  • O. N. Gaponenko
    • 1
  • K. V. Golubkov
    • 1
  • T. I. Gress
    • 3
  • I. A. Danilchenko
    • 1
  • Zh. -A. M. Dzhilkibaev
    • 1
  • G. V. Domogatsky
    • 1
  • A. A. Doroshenko
    • 1
  • A. N. Dyachok
    • 3
  • V. A. Zhukov
    • 1
  • A. V. Zagorodnikov
    • 3
  • V. L. Zurbanov
    • 3
  • K. G. Kebkal
    • 7
  • O. G. Kebkal
    • 7
  • A. V. Kozhin
    • 4
  • K. V. Konischev
    • 2
  • A. V. Korobchenko
    • 2
  • F. K. Koshel
    • 1
  • A. P. Koshechkin
    • 1
  • V. F. Kulepov
    • 5
  • D. A. Kuleshov
    • 1
  • V. I. Ljashuk
    • 1
  • M. B. Milenin
    • 5
  • R. A. Mirgazov
    • 3
  • E. R. Osipova
    • 4
  • A. I. Panfilov
    • 1
  • L. V. Pan’kov
    • 3
  • E. N. Pliskovsky
    • 2
  • M. I. Rozanov
    • 6
  • E. V. Rjabov
    • 3
  • A. V. Skurihin
    • 4
  • A. A. Smagina
    • 2
  • O. V. Suvorova
    • 1
  • V. A. Tabolenko
    • 3
  • B. A. Tarashansky
    • 3
  • S. V. Fialkovsky
    • 6
  • Z. Honz
    • 2
  • B. A. Shaybonov
    • 2
  • A. A. Sheifler
    • 1
  • M. D. Shelepov
    • 1
  • S. A. Yakovlev
    • 7
  1. 1.Institute for Nuclear ResearchMoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.Irkutsk State UniversityIrkutskRussia
  4. 4.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  5. 5.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia
  6. 6.St. Petersburg State Marine UniversitySt. PetersburgRussia
  7. 7.EvoLogics GmbHBerlinGermany

Personalised recommendations