Physics of Particles and Nuclei Letters

, Volume 13, Issue 5, pp 557–560 | Cite as

New analog electronics for the new challenges in the synthesis of superheavy elements

  • V. G. Subbotin
  • A. M. Zubareva
  • A. A. Voinov
  • A. N. Zubarev
  • L. Schlattauer
Methods of Physical Experiment

Abstract

A new series of experiments aimed at the synthesis and study of decay properties of the most neutron-deficient isotopes of element Fl (Z = 114) and of the heaviest isotopes of 118 element is planned at the DGFRS (FLNR JINR). An appropriate registering system is to be implemented to transfer spectrometric data from double-sided silicon strip detector (DSSD). New analog modules were designed that allow to simplify existing multi-channel measurement system and to improve the real-time method of “active correlations” in search for the rare events of SHE formation and decay. The main features of the new modules the 16-channel charge-sensitive preamplifier, the 16-channel analog multiplexer and the 1.25 MSPS 12-bit Parallel ADC are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. Ts. Oganessian and V. K. Utyonkov, “Super-heavy element research,” Rep. Prog. Phys. 78, 036301 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    Yu. S. Tsyganov, V. G. Subbotin, A. N. Polyakov, et al., 7 392, 197 (1997)Google Scholar
  3. 2a.
    Yu. S. Tsyganov, V. G. Subbotin, A. N. Polyakov, et al., 7 525, 213–216 (2004).Google Scholar
  4. 3.
    Yu. S. Tsyganov et al., in Proceedings of the 24th International Symposium on Nuclear Electronics and Comput-ing NEC 2013, Varna, Bulgaria, Sept. 9–16, 2013, pp. 250–256.Google Scholar
  5. 4.
    V. K. Utyonkov et al., “Experiments on the synthesis of super-heavy nuclei 284Fl and 285Fl in the 239, 240Pu + 48Ca reactions,” Phys. Rev. C 92, 034609 (2015).ADSCrossRefGoogle Scholar
  6. 5.
    J. B. Roberto et al., in Proceedings of the 5th International Conference on Fission and Properties of Neutron-Rich Nuclei, 2012, Ed. by J. H. Hamilton and A. V. Ramayya (World Scientific, Singapore, 2014), p. 287.Google Scholar
  7. 6.
    M. M. Rajabali et al., Phys. Rev. C 85, 034326 (2012), Mesytec KG, Multichannel Logarithmic Preamplifier. http://wwwmesyteccom.Google Scholar
  8. 7.
    Yu. Ts. Oganessian et al., Phys. Rev. C 87, 054621 (2012).Google Scholar
  9. 8.
    R. Grzywacz et al., Nucl. Instrum. Methods. Phys. Res., Sect. B 261, 1103 (2007).Google Scholar
  10. 9.
    wwwanalogcom.Google Scholar
  11. 10.
    A. A. Voinov, V. G. Subbotin, and A. M. Zubareva, in Proceedings of the 24th International Symposium on Nuclear Electronics and Computing NEC 2013, Varna, Bulgaria, Sept. 9–16, 2013, pp. 270–275.Google Scholar
  12. 11.
    Yu. S. Tsyganov and A. N. Polyakov, Nucl. Instrum. Methods. Phys. Res., Sect. A} 513, 413 (2003), Nucl. Instrum. Methods. Phys. Res., Sect. A 558, 329–332 (2006), Nucl. Instrum. Methods. Phys. Res., Sect. A 573, 161 (2007).ADSCrossRefGoogle Scholar
  13. 12.
    V. G. Subbotin and A. N. Kuznetsov, JINR Report 13-83-67 (Joint Inst. Nucl. Res., Dubna, 1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. G. Subbotin
    • 1
  • A. M. Zubareva
    • 1
  • A. A. Voinov
    • 1
  • A. N. Zubarev
    • 1
  • L. Schlattauer
    • 2
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Palacky UniversityOlomoucCzech Republic

Personalised recommendations