Physics of Particles and Nuclei Letters

, Volume 13, Issue 1, pp 140–148 | Cite as

Local defects in the nanostructure of the membrane of erythrocytes upon ionizing radiation of blood

  • E. K. Kozlova
  • V. A. Sergunova
  • E. A. Krasavin
  • A. V. Boreyko
  • A. V. Zavialova
  • A. P. Kozlov
  • A. M. Chernysh
Radiobiology, Ecology and Nuclear Medicine


The purpose of the study is to investigate local topological defects in the erythrocyte membranes resulting from the ultraviolet (UV) radiation of blood in vitro. Biological effects in the erythrocytes after exposure to UV radiation at a wavelength of 254 nm are equivalent to those after γ radiation. It has been shown that oxidative processes developing in a suspension upon UV radiation result in the disruption of the nanostructure of the membranes of erythrocytes. In the experiments, typical topological defects in the membrane nanostructure were observed. The parameters of the defects differed from the characteristics of the nanostructure of the control cell membrane without irradiation. The characteristic dimensions of the topological defects are commensurate with the size of the spectrin matrix. As a result of the exposure to the UV radiation, polymorphism of the erythrocytes was observed.


Erythrocyte Membrane Local Defect Nucleus Letter Topological Defect Erythrocyte Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Turker, “Potential effects of ultraviolet-C radiation on the mole rats (Spalaxleucodon), hematological values,” Am. J. Mol. Biol. 2, 235–240 (2013).CrossRefGoogle Scholar
  2. 2.
    D. K. Myers and R. W. Bide, “Biochemical effects of Xirradiation on erythrocytes,” Radiat. Res. 27, 250–263 (1966).CrossRefGoogle Scholar
  3. 3.
    R. Matthew and L. Drake, “Approaches for determining the effects of UV radiation on microorganisms in ballast water,” Manage. Biol. Invasion 4, 87–99 (2013).CrossRefGoogle Scholar
  4. 4.
    J. B. Castelino, P. V. Holland, O. P. Jacobs, M. Lapidot, and M. Markovic, “Effects of ionizing radiation on blood and blood components: a survey,” IAEA-TECDOC-934 (Vienna, 1997).Google Scholar
  5. 5.
    A. P. Kozlov, E. A. Krasavin, A. V. Boreiko, A. P. Chernyaev, P. Yu. Alekseeva, and U. A. Bliznyuk, “Investigation of erythrocyte membrane damage under the action of γ-radiation in a wide dose range using electroporation,” Phys. Part. Nucl. Lett. 5, 127 (2008).CrossRefGoogle Scholar
  6. 6.
    A. P. Kozlov, E. A. Krasavin, A. V. Boreiko, A. P. Chernyaev, E. K. Kozlova, and A. M. Chernysh, “Investigation of erythrocyte membrane damage during irradiation by accelerated boron ion beam,” Med. Fiz., No. 1, 69–72 (2007).Google Scholar
  7. 7.
    U. A. Bliznyuk, E. K. Kozlova, L. I. Deev, A. G. Platonov, A. P. Chernyaev, A. M. Chernysh, P. Yu. Alekseeva, and A. P. Kozlov, “Investigation of depth distribution of radiation effect by accelerated electron beam passing in erythrocyte suspension using the electroporation method,” Med. Fiz., No. 2, 67–70 (2007).Google Scholar
  8. 8.
    E. K. Manders and C. D. Manders, “Sterilization, stabilization and preservation of functional biologics,” Patent Application Publ., US 2004/0126880 A1.Google Scholar
  9. 9.
    Human Physiology, Ed. by R. F. Schmidt and G. Thews (Springer, Berlin, Heidelberg, New York, 1983; Mir, Moscow, 2005), pp. 423–426.Google Scholar
  10. 10.
    Yu. B. Kudryashov and B. S. Berenfel’d, Principles of Radiation Biophysics (Mosk. Gos. Univ., Moscow, 1982) [in Russian].Google Scholar
  11. 11.
    E. K. Kozlova, A. M. Chernysh, A. P. Chernyaev, A. V. Bushueva, O. E. Gudkova, V. A. Sergunova, A. P. Kozlov, and Yu. S. Zhdankina, “Oxidation processes under the action of ultraviolet radiation on red blood cells,” Med. Fiz., No. 2, 63–70 (2014).Google Scholar
  12. 12.
    H. L. Reddy, S. K. Doane, S. D. Keil, S. Marschner, and R. P. Goodrich, “Development of a riboflavin and ultraviolet light-based device to treat whole blood,” Transfusion 53 (Suppl. 1), 131–136 (2013).CrossRefGoogle Scholar
  13. 13.
    R. B. Misra, R. S. Ray, and R. K. Hans, “Effect of UVB radiation on human erythrocytes in vitro,” Toxicol. In vitro 19, 433–438 (2005).CrossRefGoogle Scholar
  14. 14.
    E. Kozlova, A. Chernysh, V. Moroz, O. Gudkova, V. Sergunova, and A. Kuzovlev, “Atomic force microscope images of the nanostructure of red blood cells membrane under the action of ionizing radiation and other physicochemical influence,” in Proceedings of the Workshop on Physics Health in Europe (CERN, 2010), p.46.Google Scholar
  15. 15.
    V. V. Moroz, A. M. Chernysh, E. K. Kozlova, P. Y. Borshegovskaya, U. A. Bliznjuk, R. M. Rysaeva, and O. Y. Gudkova, “Comparison of red blood cell membrane microstructure after different physicochemical influences: atomic force microscope research,” J. Crit. Care 25, 539.e1–539.e12 (2010).Google Scholar
  16. 16.
    V. V. Moroz, A. M. Chernysh, E. K. Kozlova, V. A. Sergunova, O. E. Gudkova, M. S. Fedorova, A. K. Kirsanova, and I. S. Novoderzhkina, “Violations of erythrocyte membrane nanostructure during acute blood loss and their correction by perfluorocarbon emulsions,” Obshch. Reanimatol. 7 (2), 5–9 (2011).CrossRefGoogle Scholar
  17. 17.
    V. V. Moroz, A. K. Kirsanova, I. S. Novoderzhkina, E. K. Kozlova, P. Yu. Borshchegovskaya, U. A. Bliznyuk, V. V. Aleksandrin, and A. M. Chernysh, “Changes in erythrocyte membrane surface ultrastructure after blood loss and its correction by laser irradiation,” Obshch. Reanimatol. 6 (2), 5–9 (2010).CrossRefGoogle Scholar
  18. 18.
    E. K. Kozlova, A. M. Chernysh, V. V. Moroz, and A. N. Kuzovlev, “Analysis of nanostructure of red blood cells membranes by space fourier transform of AFM images,” Micron 44, 218–227 (2013).CrossRefGoogle Scholar
  19. 19.
    E. Kozlova, A. Chernysh, V. Moroz, O. Gudkova, V. Sergunova, and A. Kuzovlev, “Transformation of membrane nanosurface of red blood cells under hemin action,” Sci. Rep., 11 (2014).Google Scholar
  20. 20.
    V. V. Moroz, E. K. Kozlova, A. M. Chernysh, O. E. Gudkova, and A. V. Bushueva, “Transformation of erythrocyte membrane structure under hemin action,” Obshch. Reanimatol., No. 6, 5–10 (2012).Google Scholar
  21. 21.
    A. M. Chernysh, E. K. Kozlova, V. V. Moroz, V. A. Sergunova, O. Y. Gudkova, and M. S. Fedorova, “Reversible zinc-induced injuries to erythrocyte membrane nanostructure,” Bull. Exp. Biol. Med. 154, 84–88 (2012).CrossRefGoogle Scholar
  22. 22.
    L. Wielopolski and B. Ciesielski, “Boron dose determination for BNCT using Fricke and EPR dosimetry,” in Cancer Neutron Capture Therapy, Ed. by Y. Mishima (Springer, US, 1996), pp. 467–471.CrossRefGoogle Scholar
  23. 23.
    G. Bosman, M. Stappersa, and V. Novotny, “Changes in band 3 structure as determinants of erythrocyte integrity during storage and survival after transfusion,” Blood Transfus. 8 (Suppl. 3), s48–s52 (2010).Google Scholar
  24. 24.
    V. V. Moroz, A. M. Golubev, A. M. Chernysh, E. K. Kozlova, V. Yu. Vasil’ev, O. E. Gudkova, V. A. Sergunova, and M. S. Fedorova, “Transformation of erythrocyte membrane surface structure during prolonged storage of donated blood,” Obshch. Reanimatol. 8 (1), 5 (2012).CrossRefGoogle Scholar
  25. 25.
    R. E. Jhonson and T. I. Quickenden, “Photolysis and radiolysis of water ice on outer solar system bodies,” J. Geophys. Res. 102 (E5), 10985 (1997).CrossRefADSGoogle Scholar
  26. 26.
    J. Cluitmans, P. Sens, and G. J. C. J. M. Bosman, “Cytoskeletal control of red blood cell shape: theory and practice of vesicle formation,” in Advances in Planar Lipid Bilayers and Liposomes, Ed. by A. Leitmannova Liu and A. Iglić (Academic, Burlington, 2009), Vol. 10, pp. 95–119.CrossRefGoogle Scholar
  27. 27.
    G. M. Wagner, D. T. Chiu, J. H. Qju, R. H. Heath, and B. H. Lubin, “Spectrin oxidation correlates with membrane vesiculation in stored RBCs,” Blood 69, 1777–1781 (1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. K. Kozlova
    • 1
    • 2
  • V. A. Sergunova
    • 1
  • E. A. Krasavin
    • 3
  • A. V. Boreyko
    • 3
  • A. V. Zavialova
    • 1
  • A. P. Kozlov
    • 2
  • A. M. Chernysh
    • 1
    • 2
  1. 1.Negovsky Scientific Research Institute of General ReanimatologyMoscowRussia
  2. 2.Sechenov First Moscow State Medical UniversityMoscowRussia
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations