Advertisement

Physics of Particles and Nuclei Letters

, Volume 12, Issue 1, pp 89–99 | Cite as

Locating the neutrino interaction vertex with the help of electronic detectors in the OPERA experiment

  • Yu. A. Gornushkin
  • S. G. Dmitrievsky
  • A. V. Chukanov
Methods of Physical Experiment

Abstract

The OPERA experiment is designed for the direct observation of the appearance of ντ from νμ → ντ oscillation in a νμ beam. A description of the procedure of neutrino interaction vertex localization (Brick Finding) by electronic detectors of a hybrid OPERA setup is presented. The procedure includes muon track and hadronic shower axis reconstruction and a determination of the target bricks with the highest probability to contain the vertex.

Keywords

Nucleus Letter Electronic Detector Interaction Vertex Neutrino Interaction Shower Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Guler et al. (OPERA Collaboration), “An appearance experiment to search for ν μ → ν τ oscillations in the CNGS beam: Experimental proposal,” CERN-SPSC-2000-028 (CERN, Geneva, 2000) [LNGS-P25-00].Google Scholar
  2. 2.
    N. Agafonova et al. (OPERA Collaboration), “Search for the ν μ → ν τ oscillation with the OPERA hybrid detector,” Phys. Part. Nucl. 44, 703–727 (2013).CrossRefGoogle Scholar
  3. 3.
    R. Acquafredda et al. (OPERA Collaboration), “The OPERA experiment in the CERN to Gran Sasso neutrino beam,” JINST 4, 04018 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Fukuda et al. (Super-Kamiokande Collaboration), “Evidence for oscillation of atmospheric neutrinos,” Phys. Rev. Lett. 81, 1562 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    L. Chaussard and G. Moret, “Vertex resolution and brick finding efficiency using scintillators information: Single charged particles simulation,” OPERA Internal note, 28 March, 2000.Google Scholar
  6. 6.
    G. Moret et al., “Brick finding efficiency: Monte Carlo comparisons between several scintillating tracker options,” OPERA Internal note, 23 May, 2001.Google Scholar
  7. 7.
    I. Laktineh, “Brick finding efficiency in muonic decay tau neutrino events”, OPERA Internal note, 21 Jan., 2002.Google Scholar
  8. 8.
    I. Laktineh, “Brick finding efficiency of no-muon tau neutrino events in OPERA,” OPERA Internal note, 18 Nov., 2002.Google Scholar
  9. 9.
    S. Dmitrievsky, Yu. Gornushkin, and G. Ososkov, “Neural networks, cellular automata, and robust approach applications for vertex localization in the OPERA Target Tracker detector”, Preprint No. E10-2005-216 (Joint Institute for Nuclear Research, Dubna, 2005).Google Scholar
  10. 10.
    A. Chukanov, S. Dmitrievsky, and Yu. Gornushkin, “Neutrino interaction vertex location with the OPERA electronic detectors,” OPERA public note no. 162, 2013.Google Scholar
  11. 11.
    T. Adam et al. (OPERA Collaboration), “The OPERA experiment Target Tracker,” Nucl. Instrum. Methods Phys. Res. A 577, 523 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. Glazov, I. Kisel, E. Konotopskaya, and G. Ososkov, “Filtering tracks in discrete detectors using a cellular automaton,” Nucl. Instrum. Methods Phys. Res. A 329, 262–268 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    R. Brun et al., “GEANT3,” CERN-DD/EE/84-1 (1986).Google Scholar
  14. 14.
    P. V. C. Hough, “A method and means for recognizing complex patterns”, US Patent No. 3069654 (Dec. 1962).Google Scholar
  15. 15.
    G. Ososkov, “Elastic arm methods of data analysis as a robust approach,” Tatra Mount. Math. Publ 26, 291–306 (2003).MATHMathSciNetGoogle Scholar
  16. 16.
    T. Khanna, Foundation of Neural Networks (Addison-Wesley, New York, 1989).Google Scholar
  17. 17.
    M. A. Branch, T. F. Coleman, and Y. Li, “A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems,” SIAM J. Sci. Comp. 21(1), 1–23 (1999).CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    A. Zell, G. Mamier, M. Vogt, and N. Mache, http://www.ra.cs.uni-tuebingen.de/SNNS, 1998.
  19. 19.
    Y. R. Quinlan, “Simplifying decision trees,” Int. J. Man-Mach. Stud. 28, 221 (1987).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. A. Gornushkin
    • 1
  • S. G. Dmitrievsky
    • 1
  • A. V. Chukanov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations